for Structured Network
Prediction

Stuart Andrews and Tony Jebara
Columbia University

I Learning a Distance Metric

Gi;) (COLUMBIA [JNIVERSITY

I THE CITY OF NEW YORE

Learning to Compare Examples Workshop, December 8, 2006



Outline

® |ntroduction
® (Context, motivation & problem definition
e (Contributions

® Structured network characterization
® Network prediction model
® Distance-based score function

® Maximum-margin learning
e Experiments

® 1-Matchings on toy data
® Equivalence networks on face images

® Preliminary results on social networks

e Future & related work, summary and conclusions

Learning to Compare Examples Workshop, December 8, 2006



Context

e Pattern classification

® [nputs & outputs

® Independent and identically distributed
e Pattern classification for structured objects

e Sets of inputs & outputs

® Model dependencies amongst output variables

e Parameterize model using a Mahalanobis distance
metric
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Motivation for structured
network prediction

e Man made and natural formed networks exhibit a high
degree of structural regularity
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Motivation

e Scale free networks

Protein-interaction network,
Barabdsi & Oltvai, Nature
Genetics, 2004

Jeffrey Heer, Berkeley
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Motivation

e Equivalence networks

Equivalence network on
Olivetti face images - uhion
of vertex-disjoint complete

subgraphs
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Structured network prediction

e Given ® ®
e Tl entities with attributes {Xl, C ,Xn}
X € Rd

e And a structural prior on networks

e QOutput

e Network of similar entities with desired structure

y = (Yjx)
Yjk € {O, 1} T 0
H DB
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Applications

e Tasks
e |Initializing
e Augmenting

e Filtering of networks

e Domains

® E-commerce
e Social network analysis

® Network biology
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Challenges for SNP

e How can we take structural prior into account?

e Complex dependencies amongst atomic edge predictions

e \What similarity should we use?

® Avoid engineering similarity metric for each domain
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Structural network priors - 1

e Degree d(v) of a node
o(v) =5

e Number of incident edges

e Degree distribution

e Probability of node having degree k, for all k
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Degree distributions

degree distribution
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Structural network priors - 2

e (Combinatorial families

e (Chains

® Trees & forests

e (Cycles

® Unions of disjoint complete subgraphs

® (Generalized matchings

Learning to Compare Examples Workshop, December 8, 2006



p(k)

B-matchings I

e Ab-matching has d(v) = b for (almost) all v

.

1-matching 2-matching

e We consider B-matching networks B because they
are flexible and efficient
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Predictive Model

e Maximum weight b-matching as predictive model

1. Receive nodes and attributes

2. Compute edge weights S = (Sj,k?) Sik € R

3. Select a b-matching with maximal weight

T
YjkSjk — Maxy S
- yeB

e B-matchings requires O(n’) time
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Structured network prediction

e The question that remains is how do we compute the
weights?
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Learning the weights

e Weights are parameterized by a Mahalanobis distance
metric

o sik=(x; —xp)' Qa; —x) Q=0

e |n other words, we want to find the best linear
transformation (rotation & scaling) to facilitate
b-matching
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Learning the weights

[
e \We propose to learn the weights from one or more
partially observed networks

e \We observe the attributes of all nodes

e But only a subset of the edges

e Transductive approach

e [earn weights to “fit” training edges

e While structured network prediction
is performed over training and test edges
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Example

e Given the following nodes & edges
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Example

e 1-matching
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Example

e 1-matching
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Example

e 1-matching

§8831814
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MaXimum'margin Taskar et al. 2005

e We use the dual-extragradient algorithm to learn @

e Define the margin to be the minimum gap between the predictive
values of the true structure Yy € BB and each possible alternative
structure Y1, 4, ... € B

R [di1dis ]
so(x)'y sgo(x) = vec di.2 .
SQ(X)TY1
SQ(X)TY2
SQ(X)TY3
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MaXimum'margin Taskar et al. 2005

e We use the dual-extragradient algorithm to learn @

e Define the margin to be the minimum gap between the predictive
values of the true structure Yy € BB and each possible alternative
structure Y1, 4, ... € B

R [di1dis ]
so(x)"y s(x) = vee |12
> so(x)' (y —y1) > 1 L e |
SQ(X)TY1
SQ(X)TY2
SQ(X)TY3
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MaXimum'margin Taskar et al. 2005

e We use the dual-extragradient algorithm to learn @

e Define the margin to be the minimum gap between the predictive
values of the true structure Yy € BB and each possible alternative
structure Y1, 4, ... € B _

R diidpo

y sgo(x) = vec Uk

Learning to Compare Examples Workshop, December 8, 2006



Maximum-margin

e You can think of the dual extragradient algorithm as
successively minimizing the violation of the gap
constraints

e Each iteration focusses on “worst offending network”
1. Ybad = argminsq(x)'y
yeB
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Maximum-margin

e You can think of the dual extragradient algorithm as
successively minimizing the violation of the gap
constraints

e Each iteration focusses on “worst offending network”
1. Ybad = argminsq(x)'y
yeB
0gap(y; Ybad)
2. =@ —
Q=Q-e—45
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Maximum-margin

e You can think of the dual extragradient algorithm as
successively minimizing the violation of the gap
constraints

e Each iteration focusses on “worst offending network”

1. Ybad = al“gﬁéin sQ(x)'y
ye
djp = (z; — x) Q(z; — xy)
_ Ogap(y, Yoa) e ’
2 Q=Q- =35 =(Q, (&j — a)(x; — 1))

linear in Q

> (= mp)(wy—a)" — > (w— )z — )’

jkeFP jkeFN
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Maximum-margin

e You can think of the dual extragradient algorithm as
successively minimizing the violation of the gap
constraints

e Each iteration focusses on “worst offending network”
1. Ybad = argminsq(x)'y
yeB

Ogap(y, Yoad) djg = (@) — 2) Qaj = )

S OTETTTG = (@, (e — w)(; — 1))
Caveat: this is not the-whole
story!
Thanks to Simon Lacoste-Julien
for help debugaing
> (= mp)(wy—a)" — > (w— )z — )’
jkeFP jkeFN
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Experiments

e How does it work in practice?
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Error metrics for SNP

e Recall & hamming loss (#FP + #FN)

e Reward the correct structure, but not the distance metric

e \We construct a structure-sensitive ROC curve

-
e Structure predictions are blended with distances
Uik = Yjk + €exp(—d;)

e \We can now measure

e Area under the ROC curve (AUC)

ROC
1
0.8
e Recall J

— 06 . -

3 « raw dist acc 98.0 recall 0.0 :

9 oal— learn dist acc 99.5 recall 72.2 ! |
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Example

200 nodes in 20

1-matching structure
XY features
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Example
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Equivalence networks %4

e Olivetti face images

3

I

300 images
10 per person
30 PCA features
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Olivetti face images
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Reconstruetions of
rows of sqrt(Q)

| @EEan
slelelsls
slelelsls

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

I Olivetti face images




Olivetti face images

Reconstructions of
rows of sqrt(Q) -
using scaled rows (x8)

Ll i
Ll 1
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Olivetti face images

Reconstructions of
rows of sqrt(Q) -
using scaled rows (x11)

o ki (1
il ke 1 e
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Olivetti face images

Reconstructions of
rows of sqrt(Q) -
using scaled rows (x14)

Learning to Compare Examples Workshop, December 8, 2006



Social network ... and future

work

nnnnn

6848 users

‘assume” b-matching strueture

bag-of-words features
(favorite music, books, ete.)

Jeffrey Heer, Berkeley
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Social network ... and future
work
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Future work

e Selecting the parameter b
e [earning and matching to the true degree distribution

e | earning over alternate combinatorial structures such
as trees, forests, cliques
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Related Work

e B. Taskar, S. Lacoste-dulien, and M. |. Jordan “Structured prediction,
dual extragradient and bregman projections” NIPS 2005

e Structured output models

® |. Tsochantaridis and T. Joachims and T. Hofmann and Y. Altun “Large
Margin Methods for Structured and Interdependent Output Variables”
JMLR
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Related Work

e Distance metric learning

e J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov
“Neighbourhood components analysis”, NIPS 2004

e E. Xing, A. Ng, M. Jordan, and S. Russell “Distance metric learning,
with application to clustering with side-information” NIPS 2003

e S. Shalev-Shwartz, Y. Singer, and A. Ng “Online and batch learning of
pseudometrics” ICML 2004, and many others ...
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Conclusions

We address a novel structured network prediction
problem

We developed a structured output model that uses a
structural network priors to make predictions

We parameterized the model using a Mahalanobis
distance metric

We demonstrated that it is possible to learn a distance
suitable for structured network prediction

The advantage of using a structured output model to
predict edges is that we obtain a higher recall for
comparable precision / FP rates
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Thank you for your attention
Question & comments?
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