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Another application possibility: supervised unsupervised 
learning
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1.  Background

Linear Discriminant Analysis: 
well-known classical method. 

Optimal subspace under 
restrictive assumptions: 
Gaussian classes with 
equal cov. matrix, take 
enough components.

Extensions: HDA, reduced-rank 
MDA. LDA and many extensions 
can be seen as models that 
maximize joint likelihood of (x,c)

Not optimal otherwise!
desired?
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Recent discriminative methods:
Information-theoretic methods 
(Torkkola - Renyi entropy based; Leiva-Murillo & Artés-Rodríquez)
Likelihood ratio-based (Zhu & Hastie)
Kernel-based (Fukumizu et al.)
Other approaches (e.g. Globerson & Roweis, Hammer & Villmann, ...)

Two recent very similar methods:
Informative Discriminant Analysis (IDA)
Neighborhood Components Analysis (NCA)

Nonparametric: no distributional assumptions, but O(N2) 
complexity per iteration.
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2.  Our Method

Basic idea: instead of optimizing the metric for a 
nonparametric predictor, optimize it for a parametric 
predictor

Parametric predictors are much simpler than 
nonparametric ones: much less computation, and 
can increase robustness

Of course, then you have to optimize the predictor 
parameters too...
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Parametric predictor: mixture of labeled Gaussians

Objective function: conditional likelihood of classes 

We call this “discriminative component analysis by 
Gaussian mixtures” or DCA-GM
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DCA-GM



3.  Optimization

Use gradient descent for the matrix A

( ) ( )( )( ) T
kc,

kc,i,
icc,

c;,|kpδ;|kc,p=L xμAxθAxθAx
A

−−
∂
∂ ∑



3.  Optimization

Use gradient descent for the matrix A

( ) ( )( )( ) T
kc,

kc,i,
icc,

c;,|kpδ;|kc,p=L xμAxθAxθAx
A

−−
∂
∂ ∑

( ) ( )
( )

( ) ( )
( )c'k,c'k,c'c'

ckc,kc,c

clc,lc,

ckc,kc,

,;Nβα
,;Nβα

=;|kc,p

,;Nβ
,;Nβ

=c;,|kp

ΣμAx
ΣμAx

θAx

ΣμAx
ΣμAx

θAx

∑

∑



3.  Optimization

We could optimize the mixture model parameters by 
conjugate gradient too.

But here we will use a hybrid approach: we optimize 
the mixture by EM before each conjugate gradient 
iteration.

Then only the projection matrix A needs to be 
optimized by conjugate gradient.
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3.  Optimization

In the hybrid optimization, the mixture parameters do 
not change during optimization of the A matrix.

We can make the centers change: 
reparameterize

Causes only small changes to the gradient and EM 
step.

kckc, = ,Aμμ '
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4.  Properties

Gradient computation and EM step are both O(N)

Finds a subspace. 

Metric within the subspace unidentifiable (mixture   
parameters can compensate for metric changes 
within the subspace)

Metric within the subspace can be found by various 
methods.
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5.  Experiments

Four benchmark data sets from UCI Machine Learning      
Repository (Wine, Balance, Ionosphere, Iris)

30 divisions of data into training and test sets

Performance measured by test-set accuracy of 1-NN    
classification

4 comparison methods:
- LDA
- LDA+RCA
- NCA
- DCA-GM, 3 Gaussians per class



5.  Experiments

DCA-GM is comparable to NCA

For these small data sets both methods run fast



6.  Conclusions

Method for discriminative component analysis 

Optimizes a subspace for a Gaussian mixture model

O(N) computation

Works equally well as NCA



6.  Conclusions

Web links:

www.cis.hut.fi/projects/mi/
www.eng.biu.ac.il/~goldbej/


