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Abstract. This work proposes a new approach to the retrieval of images
from text queries. Contrasting with previous work, this method relies on
a discriminative model: the parameters are selected in order to minimize
a loss related to the ranking performance of the model, i.e. its ability
to rank the relevant pictures above the non-relevant ones when given a
text query. In order to minimize this loss, we introduce an adaptation of
the recently proposed Passive-Aggressive algorithm. The generalization
performance of this approach is then compared with alternative models
over the Corel dataset. These experiments show that our method outper-
forms the current state-of-the-art approaches, e.g. the average precision
over Corel test data is 21.6% for our model versus 16.7% for the best
alternative, Probabilistic Latent Semantic Analysis.

1 Introduction

Several organizations, such as advertising companies or publishers, need tools to
efficiently access and organize large collections of pictures. For instance, Getty
Images proposes to its customers to browse and search more than 30 million
pictures. This paper focuses on one of the tools needed by such organizations:
a system that retrieves pictures from text queries. Given a picture collection P
and a text query q, the goal of such a system is to rank the pictures of P such
that the pictures relevant to q appear above the others. In order to perform
such a ranking, a scoring function F which assigns a real value F (q, p) to any
picture/query pair (p, q) is used: given a query q, the pictures of P are ranked
by decreasing scores.

In the ideal case, such a function F would always rank relevant pictures above
non-relevant ones, i.e. F would satisfy,

∀q,∀p+ ∈ R(q),∀p− /∈ R(q), F (q, p+) − F (q, p−) > 0, (1)

where R(q) is the set of pictures relevant to query q.
In the following, we propose a discriminative approach to identify a scoring

function close to this ideal property, relying on a set of training data Dtrain.
For that purpose, we first introduce a parameterized function Fw and a loss
L(Fw, Dtrain) related to (1). The Passive-Aggressive algorithm [1] is then adopted
to identify the parameter vector w∗ which minimizes w → L(Fw, Dtrain). This
model is referred to as Passive-Aggressive Model for Image Retrieval (PAMIR)
in the following.



The proposed model contrasts with previous approaches that mostly rely on
generative models and likelihood maximization [2–4], see Section 4. In fact, the
optimization of a loss related to the final retrieval performance is a key aspect
of PAMIR and our experiments over the Corel data show the advantage of this
discrimative approach (see Section 5). PAMIR is reported to outperform several
models, such as Cross Media Relevance Model, CMRM [3], Cross Media Trans-
lation Table, CMTT [5], or Probabilistic Latent Semantic Analysis, PLSA [4]
for various feature extraction setups. For instance, when the SIFT features are
employed (see Section 3), PAMIR yields 16.0% average precision which should
be compared to 12.3% for PLSA, the best alternative (see Section 5).

The remainder of this paper is organized as follows: Section 2 introduces
PAMIR, Section 3 presents the features extracted to represent texts and pictures,
Section 4 briefly describes the related work and Section 5 reports the experiments
and results. Finally, Section 6 draws some conclusions.

2 The PAMIR Model

In this section, we first introduce the notation used, we then describe the parame-
terization of Fw and the loss L(·, ·), we finally explain how the Passive-Aggressive

learning algorithm is applied.

2.1 Notation

In this problem, we face two types of data: pictures and texts. Both of them are
represented as vectors. The picture vector space is referred to as P while the text
vector space is referred to as T . It should further be added that T is a subset
of R

T , where T is the vocabulary size. The ith component of a vector t ∈ T is
referred to as the weight of term i in text t. A detailed description of both text
and picture representations is given in Section 3.

2.2 Model Parameterization

The parameterization of PAMIR is inspired by approaches developed for text
retrieval, i.e. the task of retrieving text documents from text queries. In this
case, documents are generally ranked with respect to their inner product with
the submitted query [6]. In other words, the scoring function is

F text : T × T → R, where F text(q, d) =

T
X

i=1

qi · di.

We would like to adopt a similar approach to assign a score F (q, p) to any pair
(q, p) consisting of a text query q ∈ T and a picture p ∈ P . For that purpose,
we first introduce a mapping fw : P → T that assigns a text vector fw(p) ∈ T
to any picture p ∈ P and we then compute the score of any query/picture pair
(q, p) as,

Fw(q, p) = F text(q, fw(p)).



In the following, we restrict ourselves to mappings fw of the form,

fw : P → R
T where fw(p) = (w1 · p, . . . , wT · p)

and w = (w1, . . . , wT ) ∈ PT .

2.3 Ranking Loss

As mentioned in the introduction, we would ideally like to identify the parame-
ters w such that Fw verifies all constraints in (1). However, we are only given a
finite training set,

Dtrain = ((q1, p
+

1 , p−
1 ), . . . , (qn, p+

n , p−
n )),

where for all k, qk is a text query (i.e. qk ∈ T ), p+
k is a picture relevant to qk

(i.e. p+
k ∈ R(qk)) and p−k is a picture non-relevant to qk (i.e. p−k /∈ R(qk)). Hence,

we would like to select w relying on Dtrain data such that Fw ensures good
generalization performance. In other words, w should be chosen such that Fw

is likely to satisfy the constraints (1) for unseen data. For that purpose, a first
approach would be to identify Fw such that all training constraints are satisfied,
i.e.

∀k, Fw(qk, p+

k ) − Fw(qk, p−
k ) > 0. (2)

However, to ensure better generalization, we propose to select w such that,

∀k, Fw(qk, p+

k ) − Fw(qk, p−
k ) ≥ ǫ

where ǫ > 0. This equation can then be rewritten as,

∀k, l(w; (qk, p+

k , p−
k )) = 0,

where l(w; (qk, p+

k , p−
k )) = max

˘

0, ǫ − Fw(qk, p+

k ) + Fw(qk, p−
k )

¯

.

This means that for all k, we would like the score Fw(qk, p+
k ) to be greater than

Fw(qk, p−k ) by at least a margin of ǫ (in the following, we arbitrarily set ǫ = 1 since
any positive value would lead to the same optimization problem). This margin

criterion is inspired from the ranking SVM approach, which has successfully
been applied to text retrieval [7]. Our model is however different from ranking
SVM in both its parameterization and its optimization procedure [1]. In fact,
we use the online Passive-Aggressive minimization algorithm which does not
rely on quadratic optimization like ranking SVM, allowing PAMIR to scale to
large constraint sets (e.g. there are ∼ 108 constraint triplets in the training data
presented in Section 5).

2.4 Training Procedure

Our goal is to minimize the loss

L(w; Dtrain) =
n

X

k=1

l(w; (qk, p+

k , p−
k )). (3)



For that purpose, we adapt the Passive-Aggressive (PA) algorithm, originally in-
troduced for classification and regression problems [1], to minimize this retrieval
loss. For this minimization, the algorithm constructs a sequence of weight vec-
tors (w0, . . . , wm) according to the following iterative procedure: the first vector
is set to be zero, w0 = 0 and, at the ith iteration, the weight wi is selected
according to the ith training example and the previous weight wi−1,

wi = argmin
w

1

2
‖w − wi−1‖2 + C · l(w; (qi, p

+

i , p−
i )). (4)

This means that, at each iteration, we select the weight wi as a trade-off between
minimizing the loss on the current example l(w; (qi, p

+
i , p−i )) and remaining close

to the previous weight vector wi−1. The aggressiveness parameter C controls this
trade-off. Adopting an approach similar to [1], it can be shown that the solution
of problem (4) is

wi = wi−1 + τivi,

where τi = min



C,
l(wi−1; (qi, p

+

i , p−
i ))

‖vi‖2

ff

and vi = −(q1(p
+

k − p−
k ), . . . , qT (p+

k − p−
k )).

At the end of the iterative process, the best weight among {w0, . . . , wm} is
selected according to some validation data Dvalid, i.e.

w = argmin
w∈{w0,...,wm}

L(w; Dvalid).

The hyperparameter C has also been selected to maximize the performance over
Dvalid. The proof that the above procedure actually minimizes the loss (3) is not
included here due to space constraint but can easily be inferred from the proof
given in [1].

3 Text and Picture Representations

This section describes the representations used for text and pictures.

3.1 Text Representation

As mentioned before, textual data are represented with vocabulary-sized vectors,
e.g. a query q will be assigned the vector

q = (q1, . . . , qT ),

where qi is the weight of term i in the query q and T is the vocabulary size. This
type of vector is often referred to as bag-of-words vector since this representation
does not take word ordering into account. In our case, the term weights corre-
spond to the popular tf · idf representation with Euclidean normalization [6],
i.e. given t ∈ T ,

ti =
tfi,t · idfi

q

PT

j=1
(tfj,t · idfi)2



where the term frequency tfi,t corresponds to the number of occurrences of term i
in t and the inverse document frequency idfi is defined as idfi = −log(ri), ri being
the fraction of training picture captions containing term i. It should be noted that
the definition of idf assumes that the training pictures are labeled with a caption.
This is the case for the Corel data used in our experiments (see Section 5).
However, were such captions to be unavailable, it would still be possible to
compute idf relying on another textual corpus, such as an encyclopedia.

3.2 Picture Representation

Similarly to previous work (See Section 4), the visterm approach has been used
for picture representation. The main idea of this approach is to define different
classes of image regions, referred to as the visual vocabulary, which then allows
the representation of each picture p as a histogram over this vocabulary. In
practice, vocabulary definition is performed automatically through the following
3-step process: first, regions of interests are detected from each training picture;
second, each extracted region is assigned a vector describing its visual properties;
third, the vocabulary is built through k-means clustering of the training region
descriptors. Finally, any picture p (either from train or test set) is assigned the
histogram,

p = (vtfp,1, . . . , vtfp,V ), (5)

where V is the visual vocabulary size and vtfp,i is the number of regions of p
that belongs to the ith visual vocabulary cluster. In our case, we used two types
of visterms, either individually or jointly.

Blobs describes the visual properties of large, color-homogeneous regions. In
this case, region detection is performed with a normalized cut algorithm and the
region descriptors are 36-dimensional vectors summarizing color (18), texture
(12) and shape (6) information of the region, see [8].

SIFTs describes edge properties of areas around salient points of the picture. In
this case, region detection is performed with a difference-of-Gaussian detector
and region descriptors consist of edge histograms, see [9].

Blob+SIFT visterms have also been combined through the concatenation of
their histograms.

Like for the text features, we also applied the normalized tf · idf weighting
to visterm histograms, i.e. each picture p is represented with:

p = (p1, . . . , pV ), where pi =
vtfp,i · vidfi

q

PV

j=1
vtfp,i · vidfj

(6)

where vidfi = −log(vri) with vri referring to the fraction of training pictures
containing at least one region mapped to the ith cluster. Space limitation pre-
vents us from reporting the results of the experiments over validation data that
concluded on the superiority of this weighting compared to (5).



4 Related Work

The previous work in image retrieval from text queries mainly focused on an
intermediate step, image auto-captioning. This task consists in estimating the
likelihood of a textual annotation, or caption, given an unannotated picture.
Given a query q, such a model then allows the user to retrieve the pictures
for which q is the most likely. In this context, several models such as Cross-
Media Relevance Models (CMRM) [3], Probabilistic Latent Semantic Analysis
(PLSA) [4] or Latent Dirichlet Allocation (LDA) [2] have been proposed. These
model hence learn a captioning model from a set of training picture that have
been manually annotated. Even if such approaches are leading to state-of-the-art
performance, it could seem questionable to focus on an intermediate annotation
problem when the final goal is to solve a retrieval problem. It would be more
appropriate to adopt a discriminative approach and directly optimize a loss
related to the retrieval performance of the model. However, to the best of our
knowledge, no discriminative approaches have been proposed in the context of
image retrieval prior to this work. Previous discriminative approaches have only
focussed on categorization ranking problems (e.g. [10, 11]), i.e. the task of ranking
unseen pictures with respect to queries or categories known at training time. This
task is hence different from a true retrieval task in which a new query (i.e. any
set of vocabulary words) can be submitted.

In absence of discriminative alternatives, this section will therefore focus
on the non-discriminative approaches that have shown to be the most effective
over the benchmark Corel dataset: Cross-Media Relevance Model (CMRM) [3],
Cross-Media Translation Table (CMTT) [5] and Probabilistic Latent Semantic
Analysis (PLSA) [4]. The proposed PAMIR approach will then be compared to
these models in Section 5.

4.1 Cross-Media Relevance Model

In order to estimate the probability of a term t given a picture ptest, P (t|ptest),
CMRM [3] estimates the joint probability P (t, ptest) and then relies on Bayes
rule. The joint probability P (t, ptest) is estimated as its expectation over the
training pictures,

P (t, ptest) =
X

ptrain∈Dtrain

P (ptrain) · P (t, ptest|ptrain).

The picture ptest is considered as a set of discrete features or visterms (see
Section 3), i.e. ptest = {v1, . . . , vm}, which means that:

P (t, ptest) =
X

ptrain∈Dtrain

P (ptrain) · P (t, v1, . . . , vm|ptrain).

Terms and visterms are then assumed to be independent given a training picture,
leading to:

P (t, ptest) =
X

ptrain∈Dtrain

P (ptrain) · P (t|ptrain)

m
Y

i=1

P (vi|p
train)



The probabilities P (t|ptrain) and P (vi|p
train) are then estimated through maxi-

mum likelihood estimates, smoothed with the Jelinek-Mercer method. Although
simple, this approach has shown to yield good performance over the standard
Corel dataset [3].

4.2 Cross-Media Translation Table

The CMTT model borrows its parameterization from cross-lingual retrieval tech-
niques [5]. In this case, textual terms and visterms are considered as words
originating from two different languages and CMTT constructs a translation ta-
ble containing the similarities sim(t, v) between any pair of term/visterm (t, v).
This translation table is then used to estimates p(t|ptest) for any term t and any
picture:

P (t|ptest) =
wt,ptest

PT

i=1
wi,ptest

, where wt,ptest
=

m
X

i=1

sim(t, vi),

v1, . . . , vm being the visterms of ptest. The translation table is computed from
the training data Dtrain according to the following process: in a first step, each
term i and each visterm j is represented by a |Dtrain| dimensional vector, ti
or vj , in which each component k is the weight of term i (or visterm j) in the
kth training example (the weighting scheme used here is tf · idf , as defined in
Section 3). As a noise removal step, the matrix M = [t1, . . . , tT , v1, . . . , vV ] con-
taining all term and visterm vectors is approximated with a lower rank matrix,
M ′ = [t′1, . . . , t

′
T , v′1, . . . , v

′
K ], through Singular Value Decomposition (SVD). The

similarity sim(i, j) between a term i and a visterm j is then defined as

sim(i, j) =
cos(t′i, v

′
j)

PV

k=1
cos(t′i, v

′
k)

.

Like CMRM, this method has also been evaluated over the Corel corpus [5],
where it has shown to be effective. The use of SVD has notably shown to improve
noise robustness. However, CMTT has also some limitations, the main one being
that cosine similarity only allows to model simple relationships between terms
and visual features. In order to circumvent this problem, approaches allowing
to model more complex relationships, such as Probabilistic Latent Semantic
Analysis [4], have been applied.

4.3 Probabilistic Latent Semantic Analysis

PLSA, introduced for text retrieval [12], has recently been applied to image
retrieval [4]. This model assumes that the observation of a picture p and a
term t in its caption are independent conditionally to a discrete latent variable
zk = {z1, . . . , zK},

P (p, t) = P (p)
K

X

k=1

P (zk|p)P (t|zk), (7)

where K is a hyperparameter of the model. A similar conditional independence
assumption is also made for visterms,

P (p, v) = P (p)
K

X

k=1

P (zk|p)P (v|zk).



In this framework, the different parameters of the model, i.e. P (zk|p), P (t|zk),
P (v|zk) are trained through the Expectation Maximization (EM) algorithm. In
fact, a modified version of EM is applied such that the latent space is con-
strained toward the text modality. This yields a latent space that better models
the semantic relationships between pictures. Once parameter fitting over the set
of training pictures is performed, it is still needed to infer P (zk|p), ∀k, for any
unnatotated test picture p. This estimation is performed to maximize the test
picture likelihood, keeping P (v|zk), ∀(v, k) to the values estimated during train-
ing. After this step, (7) can then be used to infer P (p, t) for any test picture/term
pair (p, t). Similarly to CMRM, Bayes rule is applied to compute P (t|p) from
P (p, t). This PLSA model has shown to be effective empirically, especially when
the latent space is constraint toward the text modality as explained in [4].

5 Experiments and Results

This section presents the experiments performed. The experimental setup is first
described and the results are then discussed.

5.1 Experimental Setup

The Corel Dataset3 consists of photographs of various scenes such as bears
in the wilderness, sunsets, air-shows, etc. Each picture is annotated with several
keywords describing the main objects depicted. In this work, we used a 5, 000-
picture subset of Corel. This subset has been defined in [8]: it contains 4500
development pictures (Pdev) and 500 test pictures (Ptest). This split has been
widely used in the literature, e.g. [5, 4], and has hence become a kind of bench-
mark to compare image retrieval algorithm. In our case, we further split the
development set into a 4, 000-picture train set (Ptrain) and a 500-picture valida-
tion set (Pvalid), which allows us to perform model training and hyperparameter
selection on different subsets.

Relevance data has been defined relying on picture captions, as explained
in [3]: a picture p is considered as relevant to a query q if and only if its cap-
tion contains all the terms of q. The query sets Qtrain, Qvalid and Qtest are
then defined as the set of all queries which have at least one relevant pic-
ture among Ptrain, Pvalid and Ptest respectively. The statistics for the three
picture/query sets, i.e. Dtrain = (Ptrain, Qtrain), Dvalid = (Pvalid, Qvalid) and
Dtest = (Ptest, Qtest) are summarized in Table 1 and Table 2. The PAMIR model
has then been trained and evaluated relying on these data with the following
setup: parameter fitting has been first performed over Dtrain (i.e. the training
criterion is optimized over this set) and the hyperparameters (i.e. the aggres-
siveness C and the number of iterations m) have been selected relying on Dvalid.
Finally, Dtrain and Dvalid have been used jointly to re-train the model with its
selected hyperparameters. Model evaluation has then been performed over Dtest,
as explained in the next section. The alternative models CMRM, CMTT and

3 Corel data are available at http://www.emsps.com/photocd/corelcds.htm.



Table 1. Picture Set Statistics.

Ptrain Pvalid Ptest

Number of pictures 4,000 500 500

Number of Blob clusters 500
Avg. # of Blobs per pic. 9.43 9.33 9.37

Number of SIFT clusters 1,000
Avg. # of SIFTs per pic. 232.8 226.3 229.5

Table 2. Query Set Statistics.

Qtrain Qvalid Qtest

Number of queries 7,221 1,962 2,241
Avg. # of rel. pic. per q. 5.33 2.44 2.37

Vocabulary size 179
Avg. # of words per query 2.78 2.51 2.51

PLSA have also been trained and evaluated according to the same setup for the
sake of comparison.

Evaluation Methodology The performance of PAMIR over the test data has
been assessed according to standard IR measures [6]. For each test query q ∈
Qtest, the pictures of Ptest have been ranked with respect to {Fw(q, p), ∀p ∈ Ptest}.
This ranking is then compared to the ideal case, i.e. the pictures relevant to q
appear above the others, according to the following measures:

P10 Precision at top 10 pictures is defined as the percentage Pr(10) of relevant
pictures within the top 10 positions of the ranking. This measure hence
corresponds to the percentage of relevant material that would appear in the
first 10–result page of a search engine. Although it is easy to interpret, this
measure tends to overweight queries with a large number of relevant pictures
when averaging over a query set. In the case of such queries, it is easier to
rank some relevant pictures within the top 10, simply because the relevance
set is larger and not because of any property of the ranking approach.

BEP Break-Even Point evaluates the precision at the top |R(q)| pictures, |R(q)|
being the number of relevant pictures for the evaluated query q. This hence
corresponds to the percentage Pr(|R(q)|) of relevant documents within top
|R(q)|. It is also often called R-precision. Contrary to P10, this measure does
not overweight queries with many relevant pictures.

AvgP Average Precision is the standard measure used for IR benchmark [6],
and it corresponds to the average of the precision at each position where
a relevant document appears, i.e. AvgP = 1

|R(q)|

∑
d∈R(q) Pr(rkd,q), where

rkd,q is the rank of document d for query q.

The results of PAMIR are then reported according to the average of these mea-
sures over the set of test queries Qtest. The alternative models (i.e. CMRM,
CMTT and PLSA) have also been evaluated according to this methodology.
The next section summarizes these results.



Table 3. Average precision (%) for test queries.

CMRM CMTT PLSA PAMIR

Blobs 10.4 11.8 9.7 11.9
SIFTs 10.8 9.1 12.3 16.0
Blobs + SIFTs 14.7 11.5 16.7 21.6

Table 4. Model hyperparameters.

C m

Blobs 0.01 1.75 · 106

SIFTs 0.001 94.6 · 106

Blobs + SIFTs 0.01 19.0 · 106

5.2 Experimental Results

Table 3 reports the AvgP results for all visual feature setups (see Section 3)
while Table 4 reports the hyperparameters selected for these experiments. In
all feature configurations, PAMIR is reported to outperform the other models,
e.g. for the combination of Blob and SIFT features, PAMIR yields 21.6% AvgP
which corresponds to a relative improvement of 29% over the second best model
(PLSA with 16.7% AvgP). In order to determine whether the PAMIR advantage
observed on the average could be due to a few queries, we further compared
PAMIR results with those of the alternative approaches for each of the 2, 241
queries and performed the Wilcoxon signed rank test [13] over these data. The
test rejected this hypothesis with 95% confidence for both SIFT and Blob+SIFT

features (such a test outcome is indicated by bold numbers in the tables). In the
case of Blob features, the test concluded that PAMIR performance is similar to
CMTT but better than the other models. The low number of visterms per picture
(∼ 9.5 on average, see Table 1) may explain the relatively good results of CMTT
in the case of Blobs: we hypothesize that such a concise representation may only
provide sufficient statistics to train highly constraint models, such as CMTT. On
the contrary, the SIFT representation, where richer statistics are available (∼ 230
visterms per picture on average, see Table 1), allows less constraint models, such
as PAMIR or PLSA, to reach higher performance than CMTT.

As an alternative to AvgP, we also looked at the performance in terms of
P10 and BEP, as explained in the previous section. Table 5 reports these re-
sults for the Blob+SIFT features4. These measurements confirm the superiority
of PAMIR: for all measures, PAMIR yields significantly better results when
compared to any alternative model among CMRM, CMTT and PLSA. Looking
closely at Table 5, one could remark that the P10 values reported are quite low,
e.g. only 0.88 relevant picture within top 10 for PAMIR. These low values should
however not be regarded as a failure of the models since the very low number of
relevant pictures per query should also be considered (see Table 2). In fact, P10
cannot be higher than 20.2% for our Qtest set.

4
We do not report the measurements for Blobs and SIFTs individually due to space limita-

tion.



Table 5. Average precision, break even point and precision at top 10 (%) over test
queries (Qtest) for Blob + SIFT features.

CMRM CMTT PLSA PAMIR

AvgP 14.7 11.5 16.7 21.6
BEP 10.5 5.9 10.5 13.4
P10 5.8 5.5 7.1 8.8

Table 6. Average precision, break even point and precision at top 10 (%) over single-

word test queries for Blob + SIFT features.

CMRM CMTT PLSA PAMIR

AvgP 19.2 19.1 24.5 30.7
BEP 19.7 17.4 22.2 27.2
P10 17.8 17.9 21.3 25.3

Since several previous papers only reported results over single word queries
(e.g. [5, 4]), we also performed a set of experiments over this type of query. For
that purpose, PAMIR has been trained and evaluated relying on the subsets of
Qtrain, Qvalid and Qtest containing only single word queries. These queries cor-
respond to a more restrictive scenario, i.e. the users are not given the possibility
to submit multiple-word queries. Moreover, single-word queries generally have
more relevant pictures than multiple-word queries, which makes the retrieval
task easier (in our test data, each single-word query has 9.3 relevant pictures on
average, compared to 2.4 for the whole query set). Table 6 reports the results of
the experiments over single-word queries for the best feature configuration, i.e.
Blobs+SIFTs. In this case, PAMIR outperforms the alternative approaches for
all measures, this improvement being significant according to the Wilcoxon test
at the 95% confidence level. The use of PAMIR is hence advantageous over the
alternative models in both the case where the users focus on the first ranking
positions (as shown by P10 results) and the case where the users are interested
in the whole ranking (as shown by AvgP results).

The overall outcome of these experiments is hence positive, underscoring the
benefit of using a discriminative approach to the problem of image retrieval from
text queries.

6 Conclusions

In this paper, we proposed a discriminative approach to the retrieval of images
from text queries. After introducing the model parameterization, we presented
a margin loss adapted to this retrieval task. We then proposed an adaptation
of the Passive-Aggressive algorithm [1] to identify the model parameters which
minimize this loss.

Our model, PAMIR, has then been evaluated over the Corel dataset. These
experiments have been performed relying on different visual features that de-
scribe color-homogeneous regions or salient points of the images. The results



have then been compared to those of state-of-the-art approaches, which rely on
non-discriminantive models. It has been observed that PAMIR outperforms the
alternative approaches for most queries, e.g. for the most effective visual fea-
tures, Blobs+SIFTs, the reported AvgP for PAMIR is 21.6% which should be
compared to 16.7% for PLSA, the second best model.

The results of PAMIR are hence promising and need to be confirmed over
other datasets. Furthermore, it would also be of a great interest to investigate
on the use of non-linear kernels in PAMIR. In this work, we relied on the linear
kernel over feature histograms to compare images. However, like any Passive-

Agressive model [1], PAMIR could benefit from other Mercer kernels. In par-
ticular, recently proposed image kernels, such as [14], could be effective for our
task.
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