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Abstract

This paper proposes a new approach for keyword spotting, which is not based on
HMMs. Unlike previous approaches, the proposed method employs a discriminative
learning procedure, in which the learning phase aims at maximizing the area under
the ROC curve, as this quantity is the most common measure to evaluate keyword
spotters. The keyword spotter we devise is based on mapping the input acoustic
representation of the speech utterance along with the target keyword into a vector
space. Building on techniques used for large margin and kernel methods for predict-
ing whole sequences, our keyword spotter distills to a classifier in this vector-space,
which separates speech utterances in which the keyword is uttered from speech
utterances in which the keyword is not uttered. We describe a simple iterative algo-
rithm for training a keyword spotter and discuss its formal properties. Experiments
with the TIMIT corpus show that our method outperforms the conventional HMM-
based approach. Further experiments using the TIMIT trained model, but tested
on the WSJ dataset, show that without further training our method outperforms
the conventional HMM-based approach.

Key words: Keyword spotting, Speech recognition, Large margin and kernel
methods, Support vector machines

1 Introduction

Keyword (or word) spotting refers to the detection of any occurrence of a given
word in a speech signal. Most previous work on keyword spotting has been
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based on hidden Markov models (HMMs). See for example (Benayed et al.,
2004; Ketabdar et al., 2006; Silaghi and Bourlard, 1999; Szoke et al., 2005)
and the references therein. Despite their popularity, HMM-based approaches
have several known drawbacks such as convergence of the training algorithm
(EM) to a local maxima, conditional independence of observations given the
state sequence and the fact that the likelihood is dominated by the observation
probabilities, often leaving the transition probabilities unused. However, the
most acute weakness of HMMs for keyword spotting is that they do not aim
at maximizing the detection rate of the keywords.

In this paper we propose an alternative approach for keyword spotting that
builds upon recent work on discriminative supervised learning and overcomes
some of the inherent problems of the HMM approaches. Our approach solves
directly the keyword spotting problem (rather than using a large vocabulary
speech recognizer as in Szoke et al., 2005), and does not estimate a garbage or
background model (as in Silaghi and Bourlard, 1999). The advantage of dis-
criminative learning algorithms stems from the fact that the objective function
used during the learning phase is tightly coupled with the decision task one
needs to perform. In addition, there is both theoretical and empirical evi-
dence that discriminative learning algorithms are likely to outperform genera-
tive models for the same task (see for instance Cristianini and Shawe-Taylor,
2000; Vapnik, 1998). One of the main goals of this work is to extend the notion
of discriminative learning to the task of keyword spotting.

Our proposed method is based on recent advances in kernel machines and large
margin classifiers for sequences (Shalev-Shwartz et al., 2004; Taskar et al.,
2003), which in turn build on the pioneering work of Vapnik and colleagues
(Cristianini and Shawe-Taylor, 2000; Vapnik, 1998). The keyword spotter we
devise is based on mapping the speech signal along with the target keyword
into a vector-space endowed with an inner-product. Our learning procedure
distills to a classifier in this vector-space which is aimed at separating the
utterances that contain the keyword from those that do not contain it. On
this aspect, our approach is hence related to support vector machine (SVM),
which has already been successfully applied in speech applications (Keshet
et al., 2001; Salomon et al., 2002). However, the model proposed in this paper
is different from a classical SVM since we are not addressing a simple decision
task such as binary classification or regression.

Related Work. Most work on keyword spotting has been based on HMMs. In
these approaches, the detection of the keyword is based on an HMM composed
of two sub-models, the keyword model and the background or garbage model,
such as the HMM depicted on Fig. 5. Given a speech sequence, such a model
detects the keyword through Viterbi decoding: the keyword is considered as
uttered in the sequence if the best path goes through the keyword model. This
generic framework encompasses the three main classes of HMM-based keyword
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spotters, i.e. whole-word-modeling, phonetic-based and large-vocabulary-based
approaches.

Whole-word modeling is one of the earliest approaches using HMM for key-
word spotting (Rohlicek et al., 1989; M.G. Rahim, 1997). In this context, the
keyword model is itself an HMM, trained from recorded utterances of the key-
word. The garbage model is also an HMM, trained from non-keyword speech
data. The training of such a model hence require several recorded occurrences
of the keyword, in order to estimate reliably the keyword model parameters.
Unfortunately, in most applications, such data are rarely provided for training,
which yields the introduction of phonetic-based word spotters.

In phonetic-based approaches, both the keyword model and the garbage model
are built from phonemes (or triphones) sub-models (Rohlicek et al., 1993;
Bourlard et al., 1994; Manos and Zue, 1997). Basically, the keyword model is
a left-right HMM, resulting from the concatenation of the sub-models corre-
sponding to the keyword phoneme sequence. The garbage model is an ergodic
HMM, which fully connects all phonetic sub-models. In this case, sub-model
training is performed through embedded training from a large set of acous-
tic sequences labeled phonetically, like for speech recognition HMMs (Rabiner
and Juang, 1993). This approach hence does not require training utterances
of the keyword, solving the main limitation of the whole word modeling ap-
proach. However, the phonetic-based HMM has another drawback, due to the
use of the same sub-models in the keyword model and in the garbage model.
In fact, the garbage model can intrinsically model any phoneme sequence,
including the keyword itself. This issue is typically addressed by tuning the
prior probability of the keyword, or by using a more refined garbage model,
e.g. Bourlard et al. (1994); Manos and Zue (1997). A third solution can also
be to avoid the need for garbage modeling through the computation of the
likelihood of the keyword model for any subsequence of the test signal, as
proposed in Junkawitsch et al. (1997).

A further extension of HMM spotter approaches consists in using Large Vo-
cabulary Continuous Speech Recognition (LVCSR) HMMs. This approach can
actually be seen as a phonetic-based approach in which the garbage model only
allows valid words from the lexicon, excepted the targeted keyword. This use
of additional linguistic constraints is shown to improve the spotting perfor-
mance (Rose and Paul, 1990; Weintraub, 1995; P. S. Cardillo and Miller, 2002;
Szoke et al., 2005). Such an approach however raises some conceptual and
practical concerns. From a conceptual point of view, one can wonder whether
an automatic system should require such a linguistic knowledge while a hu-
man address the keyword spotting task without knowing a large vocabulary in
the targeted language. Besides this aspect, one can also wonder whether the
design of a keyword spotting should require the expensive collection a large
amount of labeled data typically needed to train LVCSR systems, as well as
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Fig. 1. Example of our notation. The waveform of the spoken utterance “a lone
star shone...” taken from the TIMIT corpus. The keyword k is the word star. The
phonetic transcription p̄ along with the alignment sequence s̄ are schematically
depicted in the figure.

the computational requirement to perform large vocabulary decoding (Manos
and Zue, 1997).

This paper is organized as follows. In Sec. 2 we formally introduce the keyword
spotting problem. We then present the large margin approach for keyword
spotting in Sec. 3. Next, the proposed iterative learning method is described
in Sec. 4. Our method is based on non-linear phoneme recognition and seg-
mentation functions. The specific feature functions we use for are presented in
Sec. 5. In Sec. 6 we present experimental results with the TIMIT corpus and
with the Wall Street journal (WSJ) corpus. We conclude the paper in Sec. 7.

2 Problem Setting

Any keyword (or word) is naturally composed of a sequence of phonemes.
In the keyword spotting task, we are provided with a speech utterance and
a keyword and the goal is to decide whether the keyword is uttered or not,
namely, whether the corresponding sequence of phonemes is articulated in the
given utterance.

Formally, we represent a speech signal as a sequence of acoustic feature vectors
x̄ = (x1, . . . ,xT ), where xt ∈ X ⊂ Rd for all 1 ≤ t ≤ T . We denote a keyword
by k ∈ K, where K is a lexicon of words. Each keyword k is composed of
a sequence of phonemes p̄k = (p1, . . . , pL), where pl ∈ P for all 1 ≤ l ≤ L
and P is the domain of the phoneme symbols. We denote by P∗ the set of all
finite length sequences over P . Our goal is to learn a keyword spotter, denoted
f , which takes as input the pair (x̄, p̄k) and returns a real value expressing
the confidence that the targeted keyword k is uttered in x̄. That is, f is a
function from X ∗×P∗ to the set R. The confidence score outputted by f for a
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given pair (x̄, p̄k) can then be compared to a threshold b to actually determine
whether p̄k is uttered in x̄. Let us further define the alignment of a phoneme
sequence to a speech signal. We denote by sl ∈ N the start time of phoneme pl
(in frame units), and by el ∈ N the end time of phoneme pl. We assume that
the start time of phoneme pl+1 is equal to the end time of phoneme pl, that
is, el = sl+1 for all 1 ≤ l ≤ L − 1. The alignment sequence s̄k corresponding
to the phonemes sequence p̄k is a sequence of start-times and an end-time,
s̄k = (s1, . . . , sL, eL), where sl is the start-time of phoneme pl and eL is the
end-time of the last phoneme pL. An example of our notation is given in Fig. 1.

The performance of a keyword spotting system is often measured by the Re-
ceiver Operating Characteristics (ROC) curve, that is, a plot of the true pos-
itive (spotting a keyword correctly) rate as a function of the false positive
(mis-spotting a keyword) rate (see for example Benayed et al., 2004; Ketab-
dar et al., 2006; Silaghi and Bourlard, 1999). The points on the curve are
obtained by sweeping the decision threshold b from the most positive confi-
dence value outputted by the system to the most negative one. Hence, the
choice of b represents a trade-off between different operational settings, corre-
sponding to different cost functions weighing false positive and false negative
errors. Assuming a flat prior over all these cost functions, a criterion to iden-
tify a good keyword spotting system that would be good on average for all
these settings could be to select the one maximizing the area under the ROC
curve (AUC). In the following we propose an algorithm which directly aims
at maximizing the AUC.

3 A Large Margin Approach for Keyword Spotting

In this section we describe a discriminative supervised algorithm for learning
a spotting function f from a training set of examples. Our construction is
based on a set of predefined feature functions {φ}nj=1. Each feature function
is of the form φj : X ∗ × P∗ × N∗ → R . That is, each feature function takes
as input an acoustic representation of a speech utterance x̄ ∈ X ∗, together
with a phoneme sequence p̄k ∈ P∗ of the keyword k, and a candidate align-
ment sequence s̄k ∈ N∗ into an abstract vector-space, and returns a scalar
in R which, intuitively, represents the confidence in the suggested alignment
sequence given the keyword phoneme sequence p̄k. For example, one element
of the feature function can sum the number of times phoneme p comes after
phoneme p′, while other elements of the feature function may extract proper-
ties of each acoustic feature vector xt provided that phoneme p is pronounced
at time t. The description of the concrete form of the feature functions is
differed to Sec. 5.

Our goal is to learn a keyword spotter f , which takes as input a sequence of
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acoustic features x̄, a keyword p̄k, and returns a confidence value in R. The
form of the function f we use is

f(x̄, p̄k) = max
s̄

w · φ(x̄, p̄k, s̄) , (1)

where w ∈ Rn is a vector of importance weights (“model parameters”) that
should be learned and φ ∈ Rn is a vector function composed out of the fea-
ture functions φj. In other words, f returns a confidence prediction about the
existence of the keyword in the utterance by maximizing a weighted sum of
the scores returned by the feature function elements over all possible align-
ment sequences. The maximization defined by Eq. (1) is over an exponentially
large number of alignment sequences. Nevertheless, as in HMMs, if the feature
functions φ are decomposable, the maximization in Eq. (1) can be efficiently
calculated using a dynamic programming procedure.

Recall that we would like to obtain a system that maximizes the AUC on
unseen data. In order to do so, we will maximize the AUC over a large set of
training examples. In Appendix A we show that our algorithm which maxi-
mizes the AUC over the training set is likely to maximizes the AUC over an
unseen data as well. Let us consider two sets of examples. Denote by X+

k a
set of speech utterances in which the keyword k is uttered. Similarly, denote
by X−k a set of speech utterances in which the keyword k is not uttered. The
AUC for keyword k can be written in the form of the Wilcoxon-Mann-Whitney
statistic (Cortes and Mohri, 2004) as

Ak =
1

|X+
k ||X−k |

∑
x̄+∈X+

k

∑
x̄−∈X−

k

1{f(x̄+,p̄k)>f(x̄−,p̄k)}, (2)

where 1{·} refers to the indicator function, that is, 1{π} is 1 whenever the
predicate π is true and 0 otherwise. Thus, Ak estimates the probability that
the score assigned to an utterance that contains the keyword k is greater
than the score assigned to an utterance which does not contain it. Hence, the
average AUC over the set of keywords K can be written as

A =
1

|K|
∑
k∈K

Ak =
1

|K|
∑
k∈K

1

|X+
k ||X−k |

∑
x̄+∈X+

k

∑
x̄−∈X−

k

1{f(x̄+,p̄k)>f(x̄−,p̄k)}. (3)

We now describe a large margin approach for learning the weight vector w,
which defines the keyword spotting function as in Eq. (1), from a train-
ing set S of examples. Each example in the training set S is composed
of a keyword phoneme sequence p̄k, an utterance x̄+ ∈ X+

k in which the
keyword k is uttered, an utterance x̄− ∈ X−k in which the keyword k is
not uttered, and an alignment sequence s̄k that corresponds to the loca-
tion of the keyword in x̄+. Overall we have m examples, that is, S =
{(p̄k1 , x̄+

1 , x̄
−
1 , s̄

k1
1 ), . . . , (p̄km , x̄+

m, x̄
−
m, s̄

km
m )}. We assume that we have access to
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the correct alignment s̄k of the phonemes sequence p̄k for each training ut-
terance x̄+ ∈ X+

k . This assumption is actually not restrictive since such an
alignment can be inferred relying on an alignment algorithm (Keshet et al.,
2005).

Similar to the SVM algorithm for binary classification (Cortes and Vap-
nik, 1995; Vapnik, 1998), our approach for choosing the weight vector w is
based on the idea of large-margin separation. Theoretically, our approach
can be described as a two-step procedure: first, we construct the vectors
φ(x̄+

i , p̄
ki , s̄ki

i ) and φ(x̄−i , p̄
ki , s̄) in the vector space Rn based on each instance

(p̄ki , x̄+
i , x̄

−
i , s̄

ki
i ), and each possible alignment sequence s̄. Second, we find a

vector w ∈ Rn, such that the projection of vectors onto w ranks the vectors
constructed in the first step above according to their quality. Ideally, for any
keyword ki ∈ Ktrain, for every instance pair (x̄+

i , x̄
−
i ) ∈ X+

ki
× X−ki

, we would
like the following constraint to hold

w · φ(x̄+
i , p̄

ki , s̄ki
i )−max

s̄
w · φ(x̄−i , p̄

ki , s̄) ≥ 1 ∀i . (4)

That is, w should rank the utterance that contains the keyword above any
utterance that does not contain it by at least 1. Moreover, we even consider
the best alignment of the keyword within the utterance that does not contain
it. We refer to the difference w · φ(x̄+

i , p̄
ki , s̄ki

i ) − maxs̄ w · φ(x̄−i , p̄
ki , s̄) as

the margin of w with respect to the best alignment of the keyword k in the
utterance that does not contain it. Note that if the prediction of w is incorrect
then the margin is negative. Naturally, if there exists a w satisfying all the
constraints Eq. (4), the margin requirements are also satisfied by multiplying
w by a large scalar. The SVM algorithm solves this problem by selecting the
weights w minimizing 1

2
‖w‖2 subject to the constraints given in Eq. (4), as

it can be shown that the solution with the smallest norm is likely to achieve
better generalization (Vapnik, 1998).

In practice, it might be the case that the constraints given in Eq. (4) cannot be
satisfied. To overcome this obstacle, we follow the soft SVM approach (Cortes
and Vapnik, 1995; Vapnik, 1998) and define the following hinge-loss function,

`(w; (p̄k, x̄+, x̄−, s̄k)) =

1

|X+
ki
||X−ki

|

[
1−w · φ(x̄+, p̄k, s̄k) + max

s̄
w · φ(x̄−, p̄k, s̄)

]
+
, (5)

where [a]+ = max{0, a}. The hinge loss measures the maximal violation for
any of the constraints given in Eq. (4). The soft SVM approach for our problem
is to choose the vector w? which minimizes the following optimization problem

w? = arg min
w

1

2
‖w‖2 + C

m∑
i=1

`(w; (p̄ki , x̄+
i , x̄

−
i , s̄

ki
i )) , (6)
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where the parameter C serves as a complexity-accuracy trade-off parameter:
a low value of C favors a simple model, while a large value of C favors a
model which solves all training constraints (see Cristianini and Shawe-Taylor,
2000). Solving the optimization problem given in Eq. (6) is expensive since
it involves a maximization for each training example. Most of the solvers for
this problem, like SMO (Platt, 1998), iterate over the whole dataset several
times until convergence. In the next section, we propose a slightly different
method, which visits each example only once, and is based on our previous
work (Crammer et al., 2006).

4 An Iterative Algorithm

We now describe a simple iterative algorithm for learning the weight vec-
tor w. The algorithm receives as input a set of training examples S =
{(p̄ki , x̄+

i , x̄
−
i , s̄

ki
i )}mi=1 and examines each of them sequentially. Initially, we set

w = 0. At each iteration i, the algorithm updates w according to the current
example (p̄ki , x̄+

i , x̄
−
i , s̄

ki
i ) as we now describe. Denote by wi−1 the value of the

weight vector before the ith iteration. Let s̄′ be the predicted alignment for
the negative utterance, x̄−i , according to wi−1,

s̄′ = arg max
s̄

wi−1 · φ(x̄−i , p̄
ki , s̄) . (7)

Let us define the normalized difference between the feature functions of the
acoustic sequence in which the keyword is uttered and the feature functions
of the acoustic sequence in which the keyword is not uttered as ∆φi, that is,

∆φi =
1

|X+
ki
||X−ki

|
(
φ(x̄+

i , p̄
ki , s̄ki)− φ(x̄−i , p̄

ki , s̄′)
)
. (8)

The normalization factor is a result of our goal to minimize the average AUC
(see Appendix A). We set the next weight vector wi to be the minimizer of
the following optimization problem,

min
w∈Rn,ξ≥0

1

2
‖w −wi−1‖2 + C ξ (9)

s.t. w ·∆φ ≥ 1−ξ ,

where C serves as a complexity-accuracy trade-off parameter (see Crammer
et al. (2006)) and ξ is a non-negative slack variable, which indicates the loss
of the ith example. Intuitively, we would like to minimize the loss of the
current example, i.e., the slack variable ξ, while keeping the weight vector w
as close as possible to the previous weight vector wi−1. The constraint makes
the projection of the sequence that contains the keyword onto w higher than
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Input: training set S = {(p̄ki , x̄+
i , x̄

−
i , s̄

ki)}mi=1; validation set Sval; parameter C
Initialize: w0 = 0

For i = 1, . . . ,m

Predict: s̄′ = arg maxs̄ wi−1 · φ(x̄−i , p̄
ki , s̄)

Set: ∆φi = φ(x̄+
i , p̄

ki , s̄ki)− φ(x̄−i , p̄
ki , s̄′)

If wi−1 ·∆φi < 1

Set: αi = min
{
C ,

1−wi−1 ·∆φi
‖∆φi‖2

}
Update: wi = wi−1 + αi ·∆φi

Output: The weight vector w∗ which achieves best AUC performance on the
validation set Sval.

Fig. 2. An iterative algorithm.

the projection of the sequence that does not contains it onto w by at least
1. It can be shown (see Crammer et al., 2006) that the solution to the above
optimization problem is

wi = wi−1 + αi∆φi . (10)

The value of the scalar αi is based on the difference ∆Φi, the previous weight
vector wi−1, and a parameter C. Formally,

αi = min

{
C,

[1−wi−1 ·∆φi]+
‖∆φi‖2

}
. (11)

The optimization problem given in Eq. (9) is based on ongoing work on online
learning algorithms appearing in (Crammer et al., 2006). Based on this work,
it is shown in Appendix A that, under some mild technical conditions, the
cumulative performance of the iterative procedure, i.e., 1

m

∑m
i=1 1{wi·∆φi>0} is

likely to be high. Moreover, it can further be shown (see Appendix A) that if
the cumulative performance of the iterative procedure is high, there exists at
least one weight vector among the vectors {w1, . . . ,wm} which attains high
averaged performance on unseen examples as well, that is, there exists a vector
which attains high averaged AUC over a set of unseen examples. To find this
weight vector, we simply calculate the averaged loss attained by each of the
weight vectors on a validation set. A pseudo-code of our algorithm is given in
Fig. 2.

In the case the user would like to select a threshold b that would ensure a
specific requirement in terms of true positive rate or false negative rate, a
simple cross-validation procedure (see Bengio et al., 2005) would consist in
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selecting the confidence value given by our model at the point of interest over
the ROC curve plotted for some validation utterances of the targeted keyword.

5 Feature Functions

In this section we present the implementation details of our learning approach
for the task of keyword spotting. Recall that our construction is based on a set
of feature functions, {φj}nj=1, which maps an acoustic-phonetic representation
of a speech utterance as well as a suggested alignment sequence into a vector-
space. In order to make this section more readable we omit the keyword index
k.

We introduce a specific set of base functions, which is highly adequate for the
keyword spotting problem. We utilize seven different feature functions (n = 7).
These feature functions are used for defining our keyword spotting function
f(x̄, p̄) as in Eq. (1). Note that the same set of feature functions is also useful
in the task of large-margin speech phonetic segmentation (Keshet et al., 2005).

Our first four feature functions aim at capturing transitions between
phonemes. These feature functions are the distance between frames of the
acoustic signal at both sides of phoneme boundaries as suggested by an align-
ment sequence s̄. The distance measure we employ, denoted by d, is the Eu-
clidean distance between feature vectors. Our underlying assumption is that if
two frames, xt and xt′ , are derived from the same phoneme then the distance
d(xt,xt′) should be smaller than if the two frames are derived from different
phonemes. Formally, our first four feature functions are defined as

φj(x̄, p̄, s̄) =
|p̄|−1∑
i=2

d(x−j+si
,xj+si

), j ∈ {1, 2, 3, 4} . (12)

If s̄ is the correct timing sequence then distances between frames across the
phoneme change points are likely to be large. In contrast, an incorrect phoneme
start time sequence is likely to compare frames from the same phoneme, often
resulting in small distances.

The fifth feature function we use is built from a frame-wise phoneme classifier
described in Dekel et al. (2004). Formally, for each phoneme event p ∈ P and
frame x ∈ X , there is a confidence, denoted gp(x), that the phoneme p is
pronounced in the frame x. The resulting feature function measures the cu-
mulative confidence of the complete speech signal given the phoneme sequence
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and their start-times,

φ5(x̄, p̄, s̄) =
|p̄|∑
i=1

si+1−1∑
t=si

gpi
(xt) . (13)

Our next feature function scores alignment sequences based on phoneme du-
rations. Unlike the previous feature functions, the sixth feature function is
oblivious to the speech signal itself. It merely examines the length of each
phoneme, as suggested by s̄, compared to the typical length required to pro-
nounce this phoneme. Formally,

φ6(x̄, p̄, s̄) =
|p̄|∑
i=1

log N (si+1 − si; µ̂pi
, σ̂pi

) , (14)

where N is a Normal probability density function with mean µ̂p and standard
deviation σ̂p. In our experiments, we estimated µ̂p and σ̂p from the training
set (see Sec. 6).

Our last feature function exploits assumptions on the speaking rate of a
speaker. Intuitively, people usually speak in an almost steady rate and there-
fore a timing sequence in which speech rate is changed abruptly is probably
incorrect. Formally, let µ̂p be the average length required to pronounce the pth
phoneme. We denote by ri the relative speech rate, ri = (si+1 − si)/µ̂pi

. That
is, ri is the ratio between the actual length of phoneme pi as suggested by s̄
to its average length. The relative speech rate presumably changes slowly over
time. In practice the speaking rate ratios often differ from speaker to speaker
and within a given utterance. We measure the local change in the speaking
rate as (ri − ri−1)2 and we define the feature function φ7 as the local change
in the speaking rate,

φ7(x̄, p̄, s̄) =
|p̄|∑
i=2

(ri − ri−1)2 . (15)

Each of the feature functions is normalized by the number of frames in the
speech utterance, and each of the feature functions is weighted be a fixed con-
stant, {βj}7

j=1. The constants are determined so as to maximize performance
over a validation set.

6 Experimental Results

To validate the effectiveness of the proposed approach we performed experi-
ments with the TIMIT corpus. We divided the training portion of TIMIT (ex-
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Fig. 3. ROC curves of the discriminative algorithm and the HMM approach, trained
on the TIMIT training set and tested on 80 keywords from TIMIT test set. The
AUC of the ROC curves is 0.99 and 0.96 for the discriminative algorithm and the
HMM algorithm, respectively.

cluding the SA1 and SA2 utterances) into three disjoint parts containing 500,
80 and 3116 utterances. The first part of the training set was used for learn-
ing the functions gp (Eq. (13)), which define the feature function φ5. Those
functions were learned by the algorithm described in Dekel et al. (2004) using
the MFCC+∆+∆∆ acoustic features and a Gaussian kernel with parameter
σ = 6.24.

The second set of 80 utterances formed the validation set needed for our
keyword spotting algorithm. The set was built out of a set of 40 keywords
randomly chosen from the TIMIT lexicon. The 80 utterances were chosen by
pairs: one utterance in which the keyword was uttered and another utterance
in which the keyword was not uttered. Finally, we ran our iterative algorithm
on the rest of the utterances in the training set. The value of the parameter
C was set to be 1.

We compared the results of our method to the HMM approach, where each
phoneme was represented by a simple left-to-right HMM of 5 emitting states
with 40 diagonal Gaussians. These models were enrolled as follows: first the
HMMs were initialized using K-means, and then enrolled independently using
EM. The second step, often called embedded training, re-enrolls all the models
by relaxing the segmentation constraints using a forced alignment. Minimum
values of the variances for each Gaussian were set to 20% of the global variance
of the data. All HMM experiments were done using the Torch package (Col-
lobert et al., 2002). All hyper-parameters including number of states, number
of Gaussians per state, variance flooring factor, were tuned using the validation
set.

Keyword detection was performed with a new HMM composed of two sub
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Fig. 4. ROC curves of the discriminative algorithm and the HMM approach, trained
on the TIMIT training set and tested on 80 keywords from WSJ test set. The AUC
of the ROC curves is 0.94 and 0.88 for the discriminative algorithm and the HMM
algorithm, respectively.

Keyword HMM

Garbage HMM

Fig. 5. HMM topology for keyword spotting.

HMM models, the keyword model and the garbage model, as depicted in Fig. 5.
The keyword model was an HMM which estimated the likelihood of an acoustic
sequence given that the sequence represented the keyword phoneme sequence.
The garbage model was an HMM composed of phoneme HMMs fully connected
to each others, which estimated the likelihood of any acoustic sequence. The
overall HMM fully connected the keyword model and the garbage model. The
detection of a keyword given a test utterance was performed through a best
path search, were an external parameter of the prior keyword probability was
added to the keyword sub HMM model. The best path found by Viterbi decod-
ing on the overall HMM either passed through the keyword model (in which
case the keyword was said to be uttered) or not (in which case the keyword
was not in the acoustic sequence). Swiping the prior keyword probability pa-
rameters set the trade-off between the true positive rate and the false positive
rate.
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Table 1
The AUC of the discriminative algorithm compared to the HMM in the experiments.

Discriminative Algo. HMM

Corpus AUC AUC

TIMIT 0.99 0.96

WSJ 0.94 0.88

The test set was composed of 80 randomly chosen keywords, distinct from the
keywords of the training and validation sets. For each keyword, we randomly
picked at most 20 utterances in which the keyword was uttered and at most 20
utterances in which it was not uttered. Note that the number of test utterances
in which the keyword was uttered was not always 20, since some keywords were
uttered less than 20 times in the whole TIMIT test set. Both the discriminative
algorithm and the HMM based algorithm was evaluated against the test data.
The results are reported as averaged ROC curves in Fig. 3. The AUC of the
ROC curves is 0.99 and 0.96 for the discriminative algorithm and the HMM
algorithm, respectively. In order to check whether the advantage over the
averaged AUC could be due to a few keyword, we ran the Wilcoxon test. At
the 95% confidence level, the test rejected this hypothesis, showing that our
model indeed brings a consistent improvement on the keyword set.

The next experiment examines the robustness of the proposed algorithm. We
compared the performance of the proposed discriminative algorithm and of the
HMM on the WSJ corpus (Paul and Baker, 1992). Both systems were trained
on the TIMIT corpus as describe above and tested on the same 80 keywords.
For each keyword we randomly picked at most 20 utterances from the si tr s

portion of the WSJ corpus. The ROC curves are given in Fig. 4. The AUC
of the ROC curves is 0.94 and 0.88 for the discriminative algorithm and the
HMM algorithm, respectively. With more than 99% confidence, the Wilcoxon
test rejected the hypothesis that the difference between the two models was
due to only a few keywords.

A summary of the results of both experiments is given in Table 1. Close look on
both experiments, we see that the discriminative algorithm outperforms the
HMM in terms of AUC. This indeed validates our theoretical analysis that
our algorithm maximizes the AUC. Moreover, the discriminative algorithm
outperforms the HMM in all point of the ROC curve, meaning that it has
better true positive rate for every given false negative rate.
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7 Conclusions

Keyword spotting is a speech related task with more and more practical in-
terest from an application point of view. Nevertheless, current state-of-the-art
approaches are still based on classical generative HMM based systems. In this
work, we introduced a discriminative approach to keyword spotting, directly
optimizing an objective function related to the area under the ROC curve,
i.e., the most common measure for keyword spotter evaluation. Furthermore,
the proposed approach is based on a large-margin formulation of the problem
(hence expecting a good generalization performance) and an iterative training
algorithm (hence expecting to scale reasonably well to large databases). Com-
pared to state-of-the-art approaches which mostly rely on generative HMM
models, the proposed model has shown to yield a statistically significant im-
provement over the TIMIT corpus. Furthermore, the very same model trained
on the TIMIT corpus but now tested on the WSJ corpus also yielded a statisti-
cally significantly better performance than the HMM based approach. Various
extensions of this approach can be foreseen. For instance...

A Theoretical Analysis

In this appendix, we show that the iterative algorithm given in Sec. 4 maxi-
mizes the cumulative AUC, defined as

Ã =
1

m

m∑
i=1

1{wi·φ(x̄+
i ,p̄

ki ,s̄ki )≥wi·φ(x̄−,p̄ki ,s̄′i)}
. (A.1)

Our first theorem shows that the area above the curve, i.e. 1 − Ã, is smaller
than the average loss of the solution of the SVM problem defined in Eq. (6).
That is, the cumulative AUC, generating by the iterative algorithm is going
to be large, given that the loss of the SVM solution (or any other solution) is
small, and that the number of examples, m, is sufficiently large.

Theorem 1 Let S = {(p̄ki , x̄+
i , x̄

−
i , s̄

ki
i )}mi=1 be a set of training examples and

assume that for all k, x̄ and s̄ we have that ‖φ(x̄, p̄k, s̄)‖ ≤ 1. Let w? be the
optimum of the SVM problem given in Eq. (6). Let w1, . . . ,wm be the sequence
of weight vectors obtained by the algorithm in Fig. 2 given the training set S.
Then,

1− Ã ≤ 1

m
‖w?‖2 +

2C

m

m∑
i=1

`(w?; (p̄ki , x̄+
i , x̄

−
i , s̄

ki)). (A.2)

where C > 1 and Ã is the cumulative AUC.
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Proof The proof of the theorem relies on Lemma 1 and Theorem 4 in (Cram-
mer et al., 2006). Lemma 1 in (Crammer et al., 2006) implies that,

m∑
i=1

αi
(
2`i − αi‖∆φi‖2 − 2`?i

)
≤ ‖w?‖2. (A.3)

Now if the algorithm makes a prediction mistake, i.e., predicts that an ut-
terance that does not contain the keyword has a greater confidence than an-
other utterance that does contain it, then `i ≥ 1. Using the assumption that
‖φ(x̄, p̄k, s̄)‖ ≤ 1 and the definition of αi given in Eq. (11), when substituting
[1−wi−1 ·∆φi]+ for `i in its denominator, we conclude that if a prediction
mistake occurs then it holds that

αi`i ≥ min

{
`i

∆φi

, C

}
≥ min {1, C} = 1. (A.4)

Summing over all the prediction mistakes made on the entire training set S
and taking into account that αi`i is always non-negative. it holds that

m∑
i=1

αi`i ≥
m∑
i=1

1{wi·φ(x̄+
i ,p̄

ki ,s̄ki )≤wi·φ(x̄−,p̄ki ,s̄′i)}
. (A.5)

Again using the definition of αi, we know that αi`
?
i ≤ C`?i and that

αi‖∆φi‖2 ≤ `i. Plugging these two inequalities and Eq. (A.5) into Eq. (A.3)
we get

m∑
i=1

1{wi·φ(x̄+
i ,p̄

ki ,s̄ki )≤wi·φ(x̄−,p̄ki ,s̄′i)}
≤ ‖w?‖2 + 2C

m∑
i=1

`?i . (A.6)

The theorem follows by replacing the sum over prediction mistakes to a sum
over prediction hits and pluging-in the definition of the cumulative AUC given
in Eq. (A.1). 2

The next theorem states that the output of our algorithm is likely to have good
generalization, i.e. the expected value of the AUC resulted from decoding on
unseen test set is likely to be large.

Theorem 2 Under the same conditions of Thm. 1. Assume that the training
set S and the validation set Sval are both sampled i.i.d. from a distribution Q.
Denote by mval the size of the validation set. With probability of at least 1− δ
we have

1− Â = EQ

[
1{f(x̄+

i ,p̄
ki )≤f(x̄−,p̄ki )}

]
= PrQ

[
f(x̄+

i , p̄
ki) ≤ f(x̄−, p̄ki)

]
≤

1

m

m∑
i=1

`(w?; (p̄ki , x̄+
i , x̄

−
i , s̄

ki)) +
‖w?‖2

m
+

√
2 ln(2/δ)
√
m

+

√
2 ln(2m/δ)
√
mval

, (A.7)

where Â is the mean AUC defined as Â = EQ

[
1{f(x̄+

i ,p̄
ki )>f(x̄−,p̄ki )}

]
.
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Proof Denote the risk of keyword spotter f by

risk(f) = E
[
1{f(x̄+

i ,p̄
ki )≤f(x̄−,p̄ki )}

]
= Pr

[
f(x̄+

i , p̄
ki) ≤ f(x̄−, p̄ki)

]
Proposition 1 in (Cesa-Bianchi et al., 2004) implies that with probability of
at least 1− δ1 the following bound holds,

1

m

m∑
i=1

risk(fi) ≤
1

m

m∑
i=1

1{fi(x̄
+
i ,p̄

ki )≤fi(x̄−,p̄ki )} +

√
2 ln(1/δ1)
√
m

.

Combining this fact with Thm. 1 we obtain that,

1

m

m∑
i=1

risk(fi) ≤
2C

m

m∑
i=1

`?i +
‖w?‖2

m
+

√
2 ln (1/δ1)
√
m

. (A.8)

The left-hand side of the above inequality upper bounds risk(f ?), where
f ? = arg minfi

risk(fi). Therefore, among the finite set of keyword spotting
functions, F = {f1, . . . , fm}, there exists at least one keyword spotting func-
tion (for instance the function f ?) whose true risk is bounded above by the
right hand side of Eq. (A.8). Recall that the output of our algorithm is the
keyword spotter f ∈ F , which minimizes the average cost over the validation
set Sval. Applying Hoeffding inequality together with the union bound over F
we conclude that with probability of at least 1− δ2,

risk(f) ≤ risk(f ?) +

√
2 ln (m/δ2)

mval

,

where mval = |Sval|. We have therefore shown that with probability of at least
1− δ1 − δ2 the following inequality holds,

risk(f) ≤ 1

m

m∑
i=1

`?i +
‖w?‖2

m
+

√
2 ln(1/δ1)
√
m

+

√
2 ln(m/δ2)
√
mval

.

Setting δ1 = δ2 = δ/2 concludes our proof. 2
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