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Abstract

Multiple data sources containing different types of fea-
tures may be available for a given task. For instance,
users’ profiles can be used to build recommendation sys-
tems. In addition, a model can also use users’ histori-
cal behaviors and social networks to infer users’ inter-
ests on related products. We argue that it is desirable
to collectively use any available multiple heterogeneous
data sources in order to build effective learning mod-
els. We call this framework heterogeneous learning. In
our proposed setting, data sources can include (i) non-
overlapping features, (ii) non-overlapping instances, and
(iii) multiple networks (i.e. graphs) that connect in-
stances. In this paper, we propose a general optimiza-
tion framework for heterogeneous learning, and devise
a corresponding learning model from gradient boosting.
The idea is to minimize the empirical loss with two con-
straints: (1) There should be consensus among the pre-
dictions of overlapping instances (if any) from different
data sources; (2) Connected instances in graph datasets
may have similar predictions. The objective function is
solved by stochastic gradient boosting trees. Further-
more, a weighting strategy is designed to emphasize in-
formative data sources, and deemphasize the noisy ones.
We formally prove that the proposed strategy leads to
a tighter error bound. This approach consistently out-
performs a standard concatenation of data sources on
movie rating prediction, number recognition and ter-
rorist attack detection tasks. We observe that the pro-
posed model can improve out-of-sample error rate by as
much as 80%.

1 Introduction

Given a target task, multiple related data sources can
be used to build prediction models. Each of the related
data sources may have a distinct set of features and
instances, and the combination of all data sources
may yield better prediction results. An example is
illustrated in Fig. 1. The task is to predict movie
ratings in the Internet Movie Database (IMDB1), which
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has been used in movie recommendation [1]. For
example, in Fig. 1(a), given that we observe that
the rating for “The Godfather” is 9.2 (out of 10),
and “The Giant Spider Invasion” is 2.8, what are the
ratings for “Apocalypse Now” and “Monster a-Go Go”?
Note that in this task, there are multiple available
databases that record various information about movies.
For instance, there is a genre database (Fig. 1(b)), a
sound technique database (Fig. 1(c)), a running times
database (Fig. 1(d)), an actor graph database that links
two movies together if the same actor/actress performs
in the movies (Fig. 1(e)), and a director graph database
that links two movies if they are directed by the same
director (Fig. 1(f)). Note that these multiple data
sources have the following properties:

• Firstly, each data source can have its own feature
sets. For example, the running times database
(Fig. 1(d)) has numerical features; the genre
database (Fig. 1(b)) has nominal features, and the
actor graph database (Fig. 1(e)) provides graph re-
lational features.

• Secondly, each data source can have its own set of
instances. For example, the genre database does
not have the record for “Monster a-Go Go”; the
running times database does not have any record
of “Apocalypse Now”.

Note that it is difficult to build an accurate prediction
model by using only one of the five databases, since the
information in each of them is incomplete. However, if
we consider the five data sources collectively, we are able
to infer that the rating of “Apocalypse Now” (ground
truth: 8.6) may be close to that of “The Godfather”,
since they are similar in genre and they are connected
in the actor graph. Similarly, one can infer that the
rating for “Monster a-Go Go” (ground truth: 1.5) is
similar to that of “The Giant Spider Invasion”.

In the past, multi-view learning [2, 3] was pro-
posed to study a related problem where each instance
can have different views. However, it usually does not
consider graph data with relational features, especially
when there are multiple graphs and each graph may
only contain a subset of the relation features. Hence,
we study a more general learning scenario called hetero-



Name Ratings

The Godfather 9.2

Apocalypse Now ?

Monster a-Go Go ?

The Giant Spider Invasion 2.8

(a) Movie rating prediction.

Name Genre

The Godfather Drama, Crime

Apocalypse Now Drama, War

The Giant Spider Invasion Horror, Sci-Fi

(b) Genre database.

Name Sound Technique

Apocalypse Now DTS, Digital, 6-Track

Monster a-Go Go Mono

The Giant Spider Invasion Mono

(c) Sound technique database.

Name Running t imes (mins)

The Godfather 175

Monster a-Go Go 70

The Giant Spider Invasion 84

(d) Running times.

Godfather Apocalypse

Monster The Giant Spider

(e) Actor graph.

Godfather

Monster The Giant Spider

(f) Director graph that does
not have record on “Apoca-
lypse Now”.

Figure 1: Combining different sources to infer movie ratings. The true rating for “Apocalypse Now” is 8.6, while
the rating for “Monster a-Go Go” is 1.5.

geneous learning where the data can come from multi-
ple sources. Specifically, the data sources can (1) have
non-overlapping features (i.e., new features in certain
data sources), (2) have some non-overlapping instances
(i.e., new objects/instances in certain data sources),
and (3) contain multiple network (i.e. weighted graphs)
datasets. Furthermore, some of the data sources may
contain substantial noise or low-quality data. Our aim
is to utilize all data sources collectively and judiciously,
in order to improve the learning performance.

A general objective function is proposed to make
good use of the information from these multiple data
sources. The intuition is to learn a prediction func-
tion from each data source to minimize the empirical
loss with two constraints. First, if there are overlap-
ping instances, the predictions of the same instance
should be similar even when learning from different data
sources. Second, the predictions of connected data (i.e.,
instances connected in any of the graphs) should be
similar. Finally, the prediction models are judiciously
combined (with different weights) to generate a global
prediction model. In order to solve the objective func-
tion, we borrow ideas from gradient boosting decision
trees (GBDT), which is an iterated algorithm that gen-
erates a sequence of decision trees, where each tree fits

the gradient residual of the objective function. We call
our proposed algorithm Gradient Boosting Consensus
(GBC) because each data source generates a set of trees,
and the consensus of the decision trees makes the final
prediction. Moreover, GBC has the following proper-
ties.

• Deep-ensemble. Recall that the traditional boost-
ing tree model is an iterated algorithm that builds
new trees based on the previous iterations (residu-
als). Usually, these new trees are generated based
on the residual of only one data source. However,
as shown in Fig. 2, GBC generates new trees collec-
tively from all data sources (horizontally) in each
iteration (vertically). We call it “deep ensemble”
since it ensembles models both horizontally and
vertically to make the final prediction.

• Network-friendly. Unlike traditional boosting trees,
GBC can take advantage of multiple graph datasets
to improve learning. In other words, it can take
advantage of traditional vector-based features and
graph relational features simultaneously.

• Robust. Some data sources may contain substan-
tial noise. A weighting strategy is incorporated into
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Figure 2: Gradient Boosting Consensus.

GBC to emphasize informative data sources and
deemphasize the noisy ones. This weighting strat-
egy is further proven to have a tighter error bound
in both inductive and transductive settings.

We conducted three sets of experiments. These ex-
periments include IMDB movie rating prediction, UCI
number recognition, and terrorist attack detection, and
each task has a set of data sources with heterogeneous
features. For example, in the IMDB movie rating pre-
diction task, we have data sources about the plots of
the movies (text data), technologies used by the movies
(nominal features), running times of the movies (nu-
merical features), and several movie graphs (such as di-
rector graph, actor graph). All these mixture types of
data sources were used collectively to build a prediction
model. Since there is no previous model that can handle
the problem directly, we have constructed a straightfor-
ward baseline which first appends all data sources to-
gether into a single database, and uses traditional learn-
ing models to make predictions. Experiments show that
the proposed GBC model consistently outperforms our
baseline, and can decrease the error rate by as much
as 80%.

2 Related Work

There are several areas of related works upon which our
proposed model is built. First, multi-view learning (e.g.,
[2, 4, 5]) is proposed to learn from instances which have
multiple views in different feature spaces. For example,
in [5], a framework is proposed to reconcile the cluster-
ing results from different views. In [6], a term called
consensus learning is proposed. The general idea is to
perform learning on each heterogeneous feature space
independently and then summarize the results via en-
semble. Recently, [7] proposes a recommendation model
(collaborative filtering) that can combine information
from different contexts. It finds a latent factor that
connects all data sources, and propagate information

through the latent factor. There are mainly two differ-
ences between our work and the previous approaches.
First, most of the previous works do not consider the
vector-based features and the relational features simul-
taneously. Second and foremost, most of the previous
works require the data sources to have records of all in-
stances in order to enable the mapping, while the pro-
posed GBC model does not have this constraint.

Another area of related work is collective classifi-
cation (e.g., [8]) that aims at predicting the class label
from a network. Its key idea is to combine the super-
vision knowledge from traditional vector-based feature
vectors, as well as the linkage information from the net-
work. It has been applied to various applications such
as part-of-speech tagging [9], classification of hypertext
documents using hyperlinks [10], etc. Most of these
works study the case when there is only one vector-based
feature space and only one relational feature space, and
the focus is how to combine the two. Different from tra-
ditional collective classification framework, we consider
multiple vector-based features and multiple relational
features simultaneously. Specifically, [11] proposes an
approach to combine multiple graphs to improve the
learning. The basic idea is to average the predictions
during training. There are three differences between
the previous works and the current model. Firstly, we
allow different data sources to have non-overlapping in-
stances. Secondly, we introduce a weight learning pro-
cess to filter out noisy data sources. Thirdly, we consider
multiple vector-based sources and multiple graphs at
the same time. Hence, all the aforementioned methods
could not effectively learn from the datasets described
in Section 4, as they all contain multiple vector-based
data sources and relational graphs.

3 Problem Formulation

In this section, we formally define the problem of het-
erogeneous learning, and then introduce a general learn-
ing objective. In heterogeneous learning, data can be
described in heterogeneous feature spaces from multi-
ple sources. Traditional vector-based features are de-

noted with the column vectors x
(j)
i ∈ Rdj correspond-

ing to the i-th data in the j-th source (or the j-th fea-
ture space) whose dimension is dj . In matrix form,

X(j) = [x
(j)
1 ,x

(j)
2 , · · · ,x(j)

m ] ∈ Rdj×m is the dataset
in the j-th feature space where m is the sample size.
Different from vector-based features, graph relational
features describe the relationships between instances.
In other words, they are graphs representing connec-
tivity/similarity of the data. Specifically, we denote
Gg =< Vg, Eg > as the g-th graph where Vg is the
set of nodes and Eg ⊆ Vg × Vg is the set of edges.



Table 1: Symbol definition
Symbol Definition

x
(i)
j ∈ Rdi The j-th data (column vector) in the i-th source (the i-th feature space).

Gg The g-th relational graph.
Ui The set of unlabeled data in the i-th data source.
fi(x) The prediction model built from the i-th data source.
C Consensus constraint.
G Graph connectivity constraint.
T Set of labeled data.

We assume that the features from the same data source
are from the same feature space, and hence each data
source has a corresponding feature space. Furthermore,
different data sources may provide different sets of in-
stances. In other words, some instances exist in some
data sources, but are missing in the others. Thus,
heterogeneous learning is a machine learning scenario
where we consider data from different sources, but they
may (1) have different sets of instances, (2) have differ-
ent feature spaces, and (3) have multiple network based
(graph) datasets. Hence, we have p data sources pro-
viding vector-based features X(1), · · · , X(p) and q data
sources providing relational networks G1, · · · , Gq. The
aim is to derive learning models (classification, regres-
sion or clustering) by collectively and judiciously using
the p + q data sources. A set of important symbols in
the remaining of the paper are summarized in Table 1.

4 Gradient Boosting Consensus

In this section, we describe the general framework of the
proposed GBC model and its theoretical foundations.

4.1 The GBC framework In order to use multiple
data sources, the objective function aims at minimizing
the overall empirical loss in all data sources, with
two more constraints. First, the overlapping instances
should have similar predictions from the models trained
on different data sources, and we call this the principle
of consensus. Second, when graph relational data
is provided, the connected data should have similar
predictions, and we call this the principle of connectivity
similarity. In summary, the objective function can be
written as follows:

minL =
∑
i

wi
∑
x∈T

L(fi(x), y)

s.t. C
(
f ,w

)
= 0

G
(
f ,w

)
= 0

(4.1)

where L(fi(x), y) is the empirical loss on the set of
training data T , wi is the weight of importance of
the i-th data source, which is discussed in Section 4.3.

Furthermore, C
(
f ,w

)
= 0 is the constraint derived from

the principle of consensus, defined as follows:

C
(
f ,w

)
=
∑
i

wi
∑
x∈Ui

L
(
fi(x),E

(
f(x)

))
E
(
f(x)

)
=

∑
{i|x∈Ui}

wifi(x)
(4.2)

s.t.
∑
i

wi = 1

It first calculates the expected prediction E
(
f(x)

)
of a given unlabeled instance x, by summarizing
the current predictions from multiple data sources∑
{i|x∈Ui} wifi(x). This expectation is computed only

from the data sources that contain x; in other words,
it is from the data sources whose indices are in the set
{i|x ∈ Ui} where Ui is the set of unlabeled instances
in the i-th data source. Hence, if the j-th data source
does not have record of x, it will not be used to cal-
culate the expected prediction. This strategy enables
GBC to handle non-overlapping instances in multiple
data sources, and uses overlapping instances to improve
the consensus. Eq. 4.2 forces the predictions of x (e.g.,
f1(x), f2(x), · · · ) to be close to E

(
f(x)

)
.

Furthermore, according to the principle of con-
nectivity similarity, we introduce another constraint
G
(
f ,w

)
as follows:

G
(
f ,w

)
=
∑
i

wi
∑
x∈Ui

L
(
fi(x), Ẽi

(
f(x)

)
Ẽi
(
f(x)

)
=
∑
g

ŵg
|{(z, x) ∈ Gg}|

∑
(z,x)∈Gg

fi(z)
(4.3)

s.t.
∑
g

ŵg = 1

The above constraint encourages connected data to
have similar predictions. It works by calculating the
graph-based expected prediction of x by looking at
the average prediction ( 1

|{(z,x)∈Gg}|
∑

(z,x)∈Gg fi(z)) of

all its connected neighbors (z’s). If there are multiple



graphs, all the expected predictions are summarized by
the weights ŵg.

We use the method of Lagrange multipliers [12]
to solve the constraint optimization in Eq. 4.1. The
objective function becomes
(4.4)

minL =
∑
i

wi
∑
x∈T

L(fi(x), y) + λ0C
(
f ,w

)
+ λ1G

(
f ,w

)

where the two constraints C
(
f ,w

)
and G

(
f ,w

)
are reg-

ularized by Lagrange multipliers λ0 and λ1. These pa-
rameters are determined by cross-validation, which is
detailed in Section 5. Note that in Eq. 4.4, the weights
wi and ŵg (i, g = 1, 2, · · · ) are essential. On one hand,
the wis are introduced to assign different weights to dif-
ferent vector-based data sources. Intuitively, if the t-th
data source is more informative, wt should be large. On
the other hand, the ŵgs are the weights for the graph re-
lational data sources. Similarly, the aim is to give high
weights to important graph data sources, while deem-
phasizing the noisy ones. We define different weight
symbols (wi and ŵg) for the data sources with vector-
based features (wi) and graph relational features (ŵg).
The values of the weights are automatically learned and
updated in the training process, as discussed in Sec-
tion 4.3.

4.2 Model training of GBC We use stochastic gra-
dient descent [13] to solve the optimization problem in
Eq. 4.4. In general, it is an iterated algorithm that up-
dates the prediction functions f(x) in the following way:

f(x)← f(x)− ρ ∂L
∂f(x)

It is updated iteratively until a convergence condition
is satisfied. Specifically, inspired by gradient boosting
decision trees (or GBDT [13]), a regression tree is built
to fit the gradient ∂L

∂f(x) , and the best parameter ρ is

explored via line search [13]. Note that the calculation
of ∂L

∂f(x) depends on the loss function L(f, y) as reflected

in Eq. 4.1. In the following, we use the L-2 loss (for
regression problems) and the binary logistic loss (for
binary classification problem) as examples:

GBC with L-2 Loss: In order to update the
prediction function of the i-th data source, we follow
the gradient descent formula as follows.

(4.5) fi(x)← fi(x)− ρ ∂L
∂fi(x)

If the L-2 loss is used in L, we have

∂L
∂fi(x)

=2wi

(∑
x∈T

(fi(x)− y) + λ0
∑
x∈U

(fi(x)− E)

+ λ1
∑
x∈U

(fi(x)− Ẽi)
)

The L-2 loss is a straightforward loss function for the
GBC model, and it is used to perform regression tasks
in Section 5.

GBC with Logistic Loss: With logistic loss, the
partial derivative in Eq. 4.5 becomes:

∂L
∂fi(x)

=wi

(∑
x∈T

−ye−yfi(x)

1 + e−yfi(x)
+ λ0

∑
x∈U

−Ee−Efi(x)

1 + e−Efi(x)

+ λ1
∑
x∈U

−Ẽe−Ẽfi(x)

1 + e−Ẽfi(x)

)
Note that the above formula uses the binary logistic
loss where y = −1 or y = 1, but one can easily extend
this model to tackle multi-class problems by using the
one-against-others strategy. In Section 5, we adopt this
strategy to handle multi-class problems.

With the updating rule, we can build the GBC
model as described in Algorithm 1. It first finds the
initial prediction models for all data sources in Step 1.
Then, it goes into the iteration (Step 3 to Step 11)
that generates a series of decision trees. The basic idea
is to follow the updating rule in Eq. 4.5, and build a
decision tree gi(x

i) to fit the partial derivative of the
loss (Step 5). Furthermore, we follow the idea of [13],
and let the number of iterations T be set by users. In
the experiment, it is determined by cross-validation.

Then given a new data x, the predicted output is

(4.6) f̂(x) = P(
∑

ωif̂i(x
i))

where P(y) is a prediction generation function, where
P(y) = y in regression problems, and P(y) = 1 iff y > 0
(P(y) = −1 otherwise) in binary classification problems.

4.3 Weight Learning In the objective function de-
scribed in Eq. 4.4, one important element is the set of
weights (wi and ŵg) for the data sources. Ideally, infor-
mative data sources will have high weights, and noisy
data sources will have low weights. As such, the pro-
posed GBC model can judiciously filter out the data
sources that are noisy. To this aim, we design the
weights by looking at the empirical loss of the model
trained from the data source. Specifically, if a data
source induces large loss, its weight should be low. Fol-
lowing this intuition, we design the weight as follows:



Input: Data from different sources: X1, X2,
· · · , Xp, Expected outputs (labels or
regression values) of a subset of data
Y. Number of iterations N .

Output: The prediction model HGBF f̂(x).

Initialize f̂i(x) to be a constant such that1

f̂i(x) = arg minρi
∑

x∈L L(ρi, y) for
i = 1, 2, · · · , p.
Initialize wi = 1

p .2

for t = 1, 2, · · · , N do3

for i = 1, 2, · · · , p do4

For all x(i), compute the negative5

gradient with respect to f(x(i)):

(4.7) zi = − ∂

∂fi(x(i))
L
(
f(x),w

)
Fit a regression model gi(x

(i)) that6

predicts zi’s from x(i)’s.
Line search to find the optimal gradient7

descent step size as
(4.8)

ρi = arg min
ρi
L
(
f̂i(x) + ρigi(x

(i)),w
)

Update the estimate of f̂i(x
(i)) as8

(4.9) f̂i(x
(i))← f̂i(x

(i)) + ρigi(x
(i))

end9

Update w as Eq. 4.10 and Eq. 4.11.10

end11

f̂(x) = P(
∑
ωif̂i(x

(i)))12

Algorithm 1: Gradient Boosting Consensus

(4.10) wi = exp
(
−
∑
x∈L

L
(
fi(x), y

)
/z
)

where L
(
fi(x), y

)
is the empirical loss of the model

trained from the i-th data source, and z is a normaliza-
tion constant to ensure the summation of wis equals to
one. Note that the definition of the weight wi is derived
from the weighting matrix in normalized cut [14]. The
exponential part can effectively give penalty to large
loss. Hence, wi will be large if the empirical loss of the
i-th data source is small; it becomes small if the loss is
large. It is proven in Theorem 4.1 that the updating
rule of the weights in Eq. 4.10 can result in a smaller
error bound. Similarly, we define the weights for graph

data sources as follows:
(4.11)

wg = exp
(
− 1

c

∑
xga∼xgb

∑
i

wiL
(
fi(xa), fi(xb)

)
/z
)

where L
(
fi(xa), fi(xb)

)
is the pairwise loss that evalu-

ates the difference between the two predictions fi(xa)
and fi(xb). The idea behind Eq. 4.11 is to evaluate
whether a graph can link similar instances together.
If most of the connected instances have similar predic-
tions, the graph is considered to be informative. Note
that both the weights in Eq. 4.10 and the weights in
Eq. 4.11 are updated at each iteration. By replacing
them into Eq. 4.4, one can observe that the objective
function of the GBC model is adaptively updated at
each iteration. In other words, at the initial step, each
data source will be given equal weights; but after sev-
eral iterations, informative data sources will have higher
learning weights, and the objective function will “trust”
more the informative data sources.

4.4 Generalization bounds In this section, we con-
sider the incompatibility framework in [15] and [16] to
explain the proposed GBC model. Specifically, we show
that the weight learning process described in Section 4.3
can help reduce an error bound. For the sake of sim-
plicity, we consider the case where we have two data
sources X1 and X2, and the case with more data sources
can be analyzed with similar logic. Note that the goal is
to learn a pair of predictors (f1; f2), where f1 : X1 → Ŷ
and f2 : X2 → Ŷ, and Ŷ is the prediction space. Further
denote F1 and F2 as the hypothesis classes of interest,
consisting of functions from X1 (and, respectively, X2 )
to the prediction space Ŷ. Denote by L(f1) the expected
loss of f1, and L(f2) is similarly defined. Let a Bayes
optimal predictor with respect to loss L be denoted as
f∗. We now apply the incompatibility framework for
the multi-view setting [15] to study GBC. We first de-
fine the incompatibility function χ : F1 × F2 → R+,
and some t ≥ 0 as those pairs of functions which are
compatible to the tune of t, which can be written as:

Cχ(t) = {(f1, f2) : f1 ∈ F1, f2 ∈ F2 and E[χ(f1, f2)] ≤ t}

Intuitively, the function Cχ(t) captures the set of func-
tion pairs f1 and f2 that are compatible with respect
to a “maximal expected difference” t. From [15], it
is proven that there exists a symmetric function d :
F1 × F2, and a monotonically increasing non-negative
function Φ on the reals such that for all f ,

E[d(f1(x); f2(x))] ≤ Φ(L(f1)− L(f2))

With these functions at hand, we can derive the follow-
ing theorems:



Theorem 4.1. Let |L(f1) − L(f∗)| < ε1 and |L(f2) −
L(f∗)| < ε2, then for the incompatibility function Cχ(t),

if we set χ = d, for t = cd(Φ(
√

2ε1ε2
ε1+ε2

)+Φ(εbayes)) where

cd is a constant depends on the function d [15], we have

(4.12)

inf
(f1,f2)∈Cχ(t)

LGBC(f1, f2) ≤ L(f∗) + εbayes +

√
2ε1ε2
ε1 + ε2

Proof. Note that |L(f1) − L(f∗)| < ε1 and |L(f2) −
L(f∗)| < ε2, and the proposed model GBC adopts a
weighted strategy linear to the expected loss, which is
approximately LGBC(f1, f2) = ε2

ε1+ε2
L(f1)+ ε1

ε1+ε2
L(f2).

According to Lemma 8 in [16], we have E[χ(f1, f2)] ≤
c2d(Φ(

√
2ε1ε2
ε1+ε2

) + Φ(εbayes)), and

(4.13)
min

(f1,f2)∈Cχ(t)
LHGBF(f1, f2) ≤ LHGBF(f∗1, f∗2) + εbayes

With Lemma 7 in [16], we can get
(4.14)

min
(f1,f2)∈Cχ(t)

LHGBF(f1, f2) ≤ L(f∗) + εbayes +

√
2ε1ε2
ε1 + ε2

�

Similarily, we can derive the error bound of GBC in a
transductive setting.

Theorem 4.2. Consider the transductive formula
Eq. 4 in [16]. Given the regularized parameter λ > 0,
we denote Lλ(f) as the expected loss with the regular-
ized parameter λ. If we set λc = λ

4(K+λ)2
√

2ε1ε2
ε1+ε2

then

for the pair of functions (f1, f2) ∈ F1 × F2 returned by
the transductive learning algorithm, with probability at
least 1− δ over labeled samples,

LλHGBF(f1, f2) ≤ Lλ(f∗) +
1√
n

(
2 + 3

√
ln( 2

δ )

2

)
+2CLipR̂(Ĉχ(

1

λc
)) +

√
2ε1ε2
ε1 + ε2

(4.15)

where n is the number of labeled examples, and CLip is

the Lipschitz constant for the loss, and R̂(Ĉχ( 1
λc

)) is a
term bounded by the number of unlabeled examples and
the bound of the losses.

Note that Theorem 4.1 and Theorem 4.2 derive the
error bounds of GBC in inductive and transductive
setting respectively. In effect, the weighting strategy

reduces the last term of the error bound to
√

2ε1ε2
ε1+ε2

,

as compared to the equal-weighting strategy whose last

term is
√

ε1+ε2
2 [15]. Hence, the weighting strategy

induces a tighter bound since
√

2ε1ε2
ε1+ε2

≤
√

ε1+ε2
2 . It is

important to note that if the the predictions of different
data sources vary significantly (|ε1 − ε2| is large), the
proposed weighting strategy has a much tighter bound
than the equal-weighting strategy. In other words,
if there are some noisy data sources that potentially
lead to large error rate, GBC can effectively reduce
their effect. This is an important property of GBC to
handle noisy data sources. This strategy is evaluated
empirically in the next section.

5 Experiments

In this section, we report three sets of experiments that
were conducted in order to evaluate the proposed GBC
model applied to multiple data sources. We aim to
answer the following questions:

• Can GBC make good use of multiple data sources?
Can it beat other more straightforward strategies?

• What is the performance of GBC if there exist non-
overlapping instances in different data sources?

5.1 Datasets The aim of the first set of experiments
is to predict movie ratings from the IMDB database.2

Note that there are 10 data sources in this task. For
example, there is a data source about the plots of the
movies, and a data source about the techniques used
in the movies (e.g., 3D IMAX). Furthermore, there are
several data sources providing different graph relational
data about the movies. For example, in a director
graph, two movies are connected if they have the same
director. A summary of the different data sources can
be found in Table 2. It is important to note that each of
the data sources may provide certain useful information
for predicting the ratings of the movies. For instance,
the Genre database may reflect that certain types of
movies are likely to have high ratings (e.g., Fantasy); the
Director graph database implicitly infers movie ratings
from similar movies of the same director (e.g., Steven
Spielberg has many high-rating movies.). Thus, it is
desirable to incorporate different types of data sources
to give a more accurate movie rating prediction. This is
an essential task for online TV/movie recommendation,
such as the famous $1,000,000 Netflix prize [17].

The second set of experiments is about handwritten
number recognition. The dataset contains 2000 hand-
written numerals (“0”–“9”) extracted from a collection

2http://www.imdb.com/



Table 2: IMDB Movie Rating Prediction
Data source Type of features

Quote Database Text
Plot Database Text
Technology Database Nominal
Sound Technology Database Nominal
Running Time Database Real
Genre Database Binary
Actor Graph Graph
Actress Graph Graph
Director Graph Graph
Writter Graph Graph

of Dutch utility maps.3 The handwritten numbers are
scanned and digitized as binary images. They are repre-
sented in terms of the following seven data sources with
different vector-based feature spaces: (1) 76 Fourier co-
efficients of the character shapes, (2) 216 profile corre-
lations, (3) 64 Karhunen-Love coefficients, (4) 240 pixel
averages in 2 × 3 windows, (5) 47 Zernike moments,
(6) a graph dataset constructed from the morphological
similarity (i.e., two objects are connected if they have
similar morphology appearance), and (7) a graph gen-
erated with the same method as (6), but with random
Gaussian noise imposed in the morphological similarity.
This dataset is included to test the performance of GBC
on noisy data. The aim is to classify a given object to
one of the ten classes (“0”–“9”). The statistics of the
dataset are summarized in Table 3.

The third set of datasets is downloaded from the
UMD collective classification database 4. The database
consists of 1293 different attacks in one of the six labels
indicating the type of the attack: arson, bombing,
kidnapping, NBCR attack, weapon attack and other
attack. Each attack is described by a binary value
vector of attributes whose entries indicate the absence
or presence of a feature. There are a total of 106 distinct
vector-based features, along with three sets of relational
features. One set connects the attacks together if they
happened in the same location; the other connects the
attacks if they are planned by the same organization.
In order to perform robust evaluation of the proposed
GBC model, we add another data source based on the
vector-based dataset, but with a random Gaussian noise
N (0, 1). Again, this is to test the capability of the
proposed model to handle noise.

5.2 Comparison Methods and Evaluations It is
important to emphasize again that there is no previous

3http://archive.ics.uci.edu/ml/datasets/Multiple+Features
4http://www.cs.umd.edu/projects/linqs/projects/lbc/

index.html

model that can handle the same problem directly; i.e.,
building a learning model from multiple graphs and mul-
tiple vector-based datasets with some non-overlapping
instances. Furthermore, as far as we know, there is
no state-of-the-art approaches that use the benchmark
datasets described in the previous section in the same
way. For instance, in the movie prediction dataset, we
crawl the 10 data sources directly from IMDB and use
them collectively in learning. In the case of the number
recognition dataset, we have two graph data sources,
which are different from previous approaches that only
look at vector-based features [18], clustering [19], or
feature selection problems [20]. In order to evaluate
the proposed GBC model, we design a straightforward
comparison strategy, which is to directly join all fea-
tures together. In other words, given the sources with
vector-based features X(1), · · · , X(p) and the adjacency
matrices of the graphs M(1), · · · , M(q), the joined fea-
tures can be represented as follows:

(5.16) X = [X(1)T , · · · ,X(p)T ,M(1)T , · · · ,M(q)T ]T

Since there is only one set of joined features, tradi-
tional learning algorithms can be applied on it to give
predictions (each row is an instance; each column is a
feature from a specific source). We include support vec-
tor machines (SVM) in the experiments as it is used
widely in practice. Note that in GBC, the consen-
sus term in Eq. 4.2 and the graph similarity term in
Eq. 4.3 can use unlabeled data to improve the learning.
Hence, we also compare it with semi-supervised learning
models. Specifically, semi-supervised SVM (Semi-SVM)
with a self-learning technique [21] is used as the second
comparison model. Note that we have three tasks in the
experiment where one of them (i.e., the movie rating
prediction task) is a regression task. In this task, re-
gression SVM [22] is used to give predictions. Addition-
aly, since the proposed model is derived from gradient
boosting decision trees, GBDT [13] is used as the third
comparison model, and its semi-supervised version [21]



is included as well. It is important to note that in order
to use the joined features from Eq. 5.16, these com-
parison models require that there is no non-overlapping
instances. In other words, all data sources should have
records of all instances; otherwise, the joined features
will have many missing values since some data sources
may not have records of the corresponding instances.
To evaluate GBC more comprehensively, we thus con-
ducted the experiments on two settings:

• Uniform setting: the first setting is to force all data
sources to contain records of all instances. We only
look at the instances that have records in all data
sources. Table 3 presents the statistics of datasets
in this setting. In this case, we can easily join the
features from different sources as in Eq. 5.16.

• Non-overlapping setting: the second setting is to
allow different data sources to have some non-
overlapping instances. Thus, an instance described
in one data source may not appear in other data
sources. This setting is more realistic, as the
example in Fig. 1. The proposed GBC model
is able to handle this case, since it allows non-
overlapping instances. However, for the comparison
method, there will be many missing values in the
joined features as discussed above. In this case, we
replaced the missing values with the average values
of the corresponding features. In this setting, 30%
of the instances do not have records in half of the
data sources.

We conducted experiments on the above two settings.
During each run, we randomly selected a certain portion
of examples as training data, keeping the others as test
data. For the same training set size, we randomly
selected the set of training data 10 times and the rests
were used as test data, and the results were averaged
over the 10 runs. The experiment results are reported
with different training set sizes. Note that the proposed
GBC model can be used for both classification and
regression. We used error rate to evaluate the results for
classification tasks, and root mean square error (RMSE)
for regression tasks.

5.3 Analysis of the Experiments Our aim is to
study the performance of the proposed GBC model
in the two setting described above: uniform and non-
overlapping settings. The experiment results are sum-
marized in Fig. 3 and Fig. 4, respectively. The x-axes
record different percentage of training data (while the
remainder of the data is used for evaluation), and the
y-axes report the errors of the corresponding learning
model.

We observe two major phenomena in the experi-
ments. Firstly, the proposed GBC model effectively re-
duces the error rate as compared to the other learn-
ing models in both settings. It is especially obvious
in the movie rating prediction dataset where 10 data
sources are used to build the model. In this dataset,
GBC reduces the error rate by as much as 80% in the
first setting (when there are 90% of training instances),
and 60% in the second setting (when there are 10% of
training instances). This shows that GBC is especially
advantageous when a large number of data sources are
available. We further analyze this phenomenon in the
next section with Table 4. On the other hand, the com-
parison models have to deal with a longer and noisier
feature vector. GBC beats the four approaches by ju-
diciously reducing the noise (as discussed in Section 4.3
and 4.4). Secondly, we can observe that GBC outper-
forms the other approaches significantly and substan-
tially in the second setting (Fig. 4) where some instances
do not have records on all data sources. As analyzed
in the previous section, this is one of the advantages of
GBC over the comparison models that have to deal with
missing values.

6 Discussion

In this section, we would like to answer the following
questions:

• To which extent GBC helps to integrate the knowl-
edge from multiple sources, compared to learn from
each source independently? Specifically, how do the
principles of consensus and connectivity similarity
help GBC?

• Is the weight learning algorithm necessary?

• Do we need multiple data sources? Does the
number of data sources affects the performance?

In GBC, both λ0 and λ1 (from Eq. 4.4) are deter-
mined by cross-validation. In the following set of ex-
periments, we tune the values of λ0 and λ1 in order to
study the specific effects of the consensus and connectiv-
ity terms. We compare the proposed GBC model with
three algorithms on the number recognition dataset in
the uniform setting (i.e., all data sources contain all
instances):

• The first comparison model is to set λ0 to zero, and
determine λ1 by cross-validation. In this case, the
consensus term is removed. In other words, the al-
gorithm can only apply the connectivity similarity
principle. We denote this model as “GBC without
consensus”.



Table 3: Data Descriptions
Task # of data # of data sources Average dimension Predictions

Movie Rating Prediction 3000 10 (4 graph and 6 others) 896 (×10) Regression
Number Recognition 2000 7 (2 graph and 5 others) 378 (×7) Classification (10 labels)
Terrorist Attack Classification 1293 4 (2 graph and 2 others) 422 (×4) Classification (6 labels)
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Figure 3: All data sources record the same set of objects (overlapping objects with different features).

• The second comparison model is to set λ1 to zero,
and let λ0 be determined by cross-validation. In
other words, the connectivity similarity term is
removed, and the algorithm only depends on the
empirical loss and the consensus term. We denote
this model as “GBC without graph”.

• The third comparison model is to set both λ0 and
λ1 to 0. Hence, the remaining term is the empirical
loss, and it is identical to the traditional GBDT
model.

The empirical results are presented in Fig. 5. It can be
observed that all three models outperforms traditional
GBDT. We draw two conclusions from this experiment.
First, as was already observed in previous experiments,
learning from multiple sources is advantageous. Specifi-
cally, the GBDT model builds classifiers for each of the
data source independently, and average the predictions
at the last step. However, it does not “communicate”
the prediction models during training. As a result, it
has the worst performance in Fig. 5. Second, both the
principle of consensus and the principle of connectiv-
ity similarity improve the performance. Furthermore,
it shows that the connectivity similarity term helps im-
prove the performance more when the number of train-
ing data is limited. For example, when there are only
10% of training instances, the error rate of GBC with
only the connectivity term (i.e., GBC without consen-
sus) is less than 9%, while that of GBC with only the
consensus term (i.e., GBC without Graph) is around
13%. This is because when the number of labeled train-
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Figure 5: How do consensus principle and connectivity
similarity principle help?

ing data is limited, the graph connectivity serves as a
more important source of information when connecting
unlabeled data with the limited labeled data. Again,
it is important to note that in the GBC model, the
weights of different data sources are adjusted at each it-
eration. The aim is to assign higher weights to the data
sources that contain useful information, and filter out
the noisy sources. This step is analyzed as an important
one in Theorem 4.1 since it can help reduce the upper
bound of the error rate. We specifically evaluate this
strategy on the terrorist detection task. Note that in
order to perform a robust test, one of the vector-based
sources contains Gaussian noise, as described in Sec-
tion 5.1. The empirical results are presented in Fig. 6.
It can be clearly observed that the weighting strategy
is reducing the error rate by as much as 70%. Hence,
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Figure 4: Each data source is independent (with 30% of overall non-overlapping instances).
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an appropriate weighting strategy is an important step
when dealing with multiple data sources with unknown
noise.

It is also interesting to evaluate to which extent
GBC performance is improved as the number of data
sources increases. For this purpose, the movie rating
prediction dataset is used as an example. We first
study the case when there is only one data source. In
order to do so, we run GBC on each of the data source
independently, then on 2 and 4 data sources. In the
experiments with 2 data sources, we randomly selected
2 sources from the pool (Table 2) as inputs to GBC.
These random selections of data sources were performed
10 times, and the average error is reported in Table 4.
A similar strategy was implemented to conduct the
experiment with 4 data sources. In Table 4, the results
are reported with different percentages of training data,
and the best performances are highlighted with bold
letters. It can be observed that the performance
with only one data source is the worst, and has high
root mean square error and high variance. With
more data sources available, the performance of GBC
tends to be better. This is because each data source

provides complementary information useful to build a
comprehensive model of the whole dataset.

7 Conclusion

This paper studies the problem of building a learning
model from heterogeneous data sources. Each source
can contain traditional vector-based features or graph
relational features, with potentially non-overlapping
sets of instances. As far as we know, there is no pre-
vious model that can be directly applied to solve this
problem. We propose a general framework derived from
gradient boosting, called gradient boosting consensus
(GBC). The basic idea is to solve an optimization prob-
lem that (1) minimizes the empirical loss, (2) encourages
the predictions from different data sources to be sim-
ilar, and (3) encourages the predictions of connected
data to be similar. The objective function is solved
by stochastic gradient boosting, with an incorporated
weighting strategy to adjust the importance of different
data sources according to their usefulness. Three sets
of experiments were conducted, including movie rating
prediction, number recognition, and terrorist detection.
We show that the proposed GBC model substantially
reduce prediction error rate by as much as 80%. Fi-
nally, several extended experiments are conducted to
study specific properties of the proposed algorithm and
its robustness.

8 Future Work

As a future work, we will explore better methods
to determine the algorithm parameters automatically.
Furthermore, we will improve the model to handle large
scale datasets. We will also explore other approaches to
handle heterogeneous learning.



Table 4: Effect of different number of sources. Reported results are RMSE with variance in parenthesis.
# of sources 10% 30% 50% 70% 90%

1 1.356 (0.358) 1.223 (0.290) 1.192 (0.257) 1.189 (0.258) 1.077 (0.223)
2 1.255 (0.237) 1.247 (0.293) 1.193 (0.229) 1.193 (0.150) 0.973 (0.216)
4 1.135 (0.138) 0.914 (0.114) 0.732 (0.153) 0.593 (0.105) 0.314 (0.092)

all 1.115 (0.158) 0.945 (0.116) 0.732 (0.152) 0.583 (0.059) 0.294 (0. 097)
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