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Abstract

With the rapid development of database technologies, multiple data sources may be
available for a given learning task (e.g., collaborative filtering). However, the data sources
may contain different types of features. For example, users’ profiles can be used to build
recommendation systems. In addition, a model can also use users’ historical behaviors and
social networks to infer users’ interests on related products. We argue that it is desirable to
collectively use any available multiple heterogeneous data sources in order to build effective
learning models. We call this framework heterogeneous learning. In our proposed setting,
data sources can include (i) non-overlapping features, (ii) non-overlapping instances, and
(iii) multiple networks (i.e. graphs) that connect instances. In this paper, we propose
a general optimization framework for heterogeneous learning, and devise a corresponding
learning model from gradient boosting. The idea is to minimize the empirical loss with two
constraints: (1) There should be consensus among the predictions of overlapping instances
(if any) from different data sources; (2) Connected instances in graph datasets may have
similar predictions. The objective function is solved by stochastic gradient boosting trees.
Furthermore, a weighting strategy is designed to emphasize informative data sources, and
deemphasize the noisy ones. We formally prove that the proposed strategy leads to a
tighter error bound. This approach consistently outperforms a standard concatenation of
data sources on movie rating prediction, number recognition and terrorist attack detection
tasks. Furthermore, the approach is evaluated on a distributed database from a nationa wide
phone provider with over 500,000 instances, 91 different data sources, and over 45,000,000
joined features. We observe that the proposed model can improve out-of-sample error rate
substantially.

1 Introduction

With the rapid development of database technologies, multiple related data sources can be used to
build prediction models given a target task. Each of the related data sources may have a distinct
set of features and instances, and we argue that the combination of all data sources may yield
better prediction results. An example is illustrated in Fig. 1. The task is to predict movie ratings
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in the Internet Movie Database (IMDB1), which has been used in movie recommendation [1].
For example, in Fig. 1(a), given that we observe that the rating for “The Godfather” is 9.2 (out
of 10), and “The Giant Spider Invasion” is 2.8, what are the ratings for “Apocalypse Now” and
“Monster a-Go Go”? Note that in this task, there are multiple available databases that record
various information about movies. For instance, there is a genre database (Fig. 1(b)), a sound
technique database (Fig. 1(c)), a running times database (Fig. 1(d)), an actor graph database
that links two movies together if the same actor/actress performs in the movies (Fig. 1(e)), and a
director graph database that links two movies if they are directed by the same director (Fig. 1(f)).
Note that these multiple data sources have the following properties:

• Firstly, each data source can have its own feature sets. For example, the running times
database (Fig. 1(d)) has numerical features; the genre database (Fig. 1(b)) has nominal
features, and the actor graph database (Fig. 1(e)) provides graph relational features.

• Secondly, each data source can have its own set of instances. For example, the genre
database does not have the record for “Monster a-Go Go”; the running times database
does not have any record of “Apocalypse Now”.

Note that it is difficult to build an accurate prediction model by using only one of the five
databases, since the information in each of them is incomplete. However, if we consider the
five data sources collectively, we are able to infer that the rating of “Apocalypse Now” (ground
truth: 8.6) may be close to that of “The Godfather”, since they are similar in genre and they
are connected in the actor graph. Similarly, one can infer that the rating for “Monster a-Go Go”
(ground truth: 1.5) is similar to that of “The Giant Spider Invasion”.

In the past, multi-view learning [2, 3] was proposed to study a related problem where each
instance can have different views. However, it usually does not consider graph data with relational
features, especially when there are multiple graphs and each graph may only contain a subset
of the relation features. Hence, we study a more general learning scenario called heterogeneous
learning where the data can come from multiple sources. Specifically, the data sources can
(1) have non-overlapping features (i.e., new features in certain data sources), (2) have some
non-overlapping instances (i.e., new objects/instances in certain data sources), and (3) contain
multiple network (i.e. weighted graphs) datasets. Furthermore, some of the data sources may
contain substantial noise or low-quality data. Our aim is to utilize all data sources collectively
and judiciously, in order to improve the learning performance.

A general objective function is proposed to make good use of the information from these
multiple data sources. The intuition is to learn a prediction function from each data source to
minimize the empirical loss with two constraints. First, if there are overlapping instances, the
predictions of the same instance should be similar even when learning from different data sources.
Second, the predictions of connected data (i.e., instances connected in any of the graphs) should
be similar. Finally, the prediction models are judiciously combined (with different weights) to
generate a global prediction model. In order to solve the objective function, we borrow ideas
from gradient boosting decision trees (GBDT), which is an iterated algorithm that generates a
sequence of decision trees, where each tree fits the gradient residual of the objective function.
We call our proposed algorithm Gradient Boosting Consensus (GBC) because each data source

1http://www.imdb.com/



Name Ratings

The Godfather 9.2

Apocalypse Now ?

Monster a-Go Go ?

The Giant Spider Invasion 2.8

(a) Movie rating prediction.

Name Genre

The Godfather Drama, Crime

Apocalypse Now Drama, War

The Giant Spider Invasion Horror, Sci-Fi

(b) Genre database.

Name Sound Technique

Apocalypse Now DTS, Digital, 6-Track

Monster a-Go Go Mono

The Giant Spider Invasion Mono

(c) Sound technique database.

Name Running t imes (mins)

The Godfather 175

Monster a-Go Go 70

The Giant Spider Invasion 84

(d) Running times.

Godfather Apocalypse

Monster The Giant Spider

(e) Actor graph.

Godfather

Monster The Giant Spider

(f) Director graph that
does not have record on
“Apocalypse Now”.

Figure 1: Combining different sources to infer movie ratings. The true rating for “Apocalypse
Now” is 8.6, while the rating for “Monster a-Go Go” is 1.5.

generates a set of trees, and the consensus of the decision trees makes the final prediction.
Moreover, GBC has the following properties.

• Deep-ensemble. Recall that the traditional boosting tree model is an iterated algorithm
that builds new trees based on the previous iterations (residuals). Usually, these new trees
are generated based on the residual of only one data source. However, as shown in Fig. 2,
GBC generates new trees collectively from all data sources (horizontally) in each iteration
(vertically). We call it “deep ensemble” since it ensembles models both horizontally and
vertically to make the final prediction.

• Network-friendly. Unlike traditional boosting trees, GBC can take advantage of multiple
graph datasets to improve learning. In other words, it can take advantage of traditional
vector-based features and graph relational features simultaneously.

• Robust. Some data sources may contain substantial noise. A weighting strategy is
incorporated into GBC to emphasize informative data sources and deemphasize the noisy
ones. This weighting strategy is further proven to have a tighter error bound in both
inductive and transductive settings.

We conducted four sets of experiments. These experiments include IMDB movie rating
prediction, UCI number recognition, terrorist attack detection, and a demographic prediction
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Figure 2: Gradient Boosting Consensus.

task in a big dataset from a nationa wide phone provider with over 500,000 samples, 91 different
data sources, and over 45,000,000 joined features. Each task has a set of data sources with
heterogeneous features. For example, in the IMDB movie rating prediction task, we have data
sources about the plots of the movies (text data), technologies used by the movies (nominal
features), running times of the movies (numerical features), and several movie graphs (such as
director graph, actor graph). All these mixture types of data sources were used collectively to
build a prediction model. Since there is no previous model that can handle the problem directly,
we have constructed a straightforward baseline which first appends all data sources together into
a single database, and uses traditional learning models to make predictions. Experiments show
that the proposed GBC model consistently outperforms our baseline, and can decrease the error
rate by as much as 80%.

2 Related Work

There are several areas of related works upon which our proposed model is built. First, multi-
view learning (e.g., [2, 4, 5]) is proposed to learn from instances which have multiple views
in different feature spaces. For example, in [4], a co-training algorithm is proposed to classify
the web pages by the text on the web page, and the text on hyperlinks pointing to the web
page. In [5], a general clustering framework is proposed to reconcile the clustering results from
different views. In [6], a term called consensus learning is proposed. The general idea is to
perform learning on each heterogeneous feature space independently and then summarize the
results via ensemble. Recently, [7] proposes a recommendation model (collaborative filtering)
that can combine information from different contexts. It finds a latent factor that connects
all data sources, and propagate information through the latent factor. There are mainly two
differences between our work and the previous approaches. First, most of the previous works do
not consider the vector-based features and the relational features simultaneously. Second and
foremost, most of the previous works require the data sources to have records of all instances in
order to enable the mapping, while the proposed GBC model does not have this constraint.

Another area of related work is collective classification (e.g., [8]) that aims at predicting
the class label from a network. Its key idea is to combine the supervision knowledge from
traditional vector-based feature vectors, as well as the linkage information from the network.
It has been applied to various applications such as part-of-speech tagging [9], classification of
hypertext documents using hyperlinks [10], etc. Most of these works study the case when there



is only one vector-based feature space and only one relational feature space, and the focus is how
to combine the two. Different from traditional collective classification framework, we consider
multiple vector-based features and multiple relational features simultaneously. Specifically, [11]
proposes an approach to combine multiple graphs to improve the learning. The basic idea is to
average the predictions during training. There are three differences between the previous works
and the current model. Firstly, we allow different data sources to have non-overlapping instances.
Secondly, we introduce a weight learning process to filter out noisy data sources. Thirdly, we
consider multiple vector-based sources and multiple graphs at the same time. Hence, all the
aforementioned methods could not effectively learn from the datasets described in Section 4, as
they all contain multiple vector-based data sources and relational graphs.

Another related field is transfer learning (e.g., [12, 13, 14, 15, 16]) which aims at learning the
target task from a related out-of-domain source task. Most research work on transfer learning
focus on how to make good use of the training data that distributes differently with the test
data. A general approach is based on re-sampling (e.g., [12]), where the motivation of it is
to “emphasize” the knowledge among “similar” and discriminating instances. Another line of
research is to find a new feature space in which the training and test data have strong similarities
(e.g., [17, 18, 19, 20, 21, 22, 23, 24]). For instance, [25] applies sparse learning techniques to
transfer the knowledge across multiple tasks. There is also a set of works that enable transfer
learning on document-related tasks. For example, [21] finds the commonality among different
tasks, such as common words, to attack NLP tasks. However, documents are usually viewed as
coming from the same feature space, since any document can be represented as “bag of words”
where the dictionary contains all possible words. Different from these works, we do not require
the original training and test datasets to be in the same feature space, or have a subset of common
features. Instead, they can be from completely different feature spaces, and they can even be
graph datasets.

The proposed model is also related to the research of ensemble learning. For example, gradient
boosting tree [26] is a work proposed by J. H. Friedman to approach the learning objective by
building an ensemble of weak learners (i.e., decision tree in this case). It is achieved by fitting a
decision tree to the residual error of the model at each iteration, and the final model is composed
of a weighted summation of all the fitted trees. GBDT is a new model widely used in the industry.
For instance, it is used in Yahoo and the search engine company Yandex in the field of “learning
to rank” [27]; it is also adopted by the winning team of the Netflix competition [28]. In this
paper, we borrow the idea of gradient boosting to solve the problem of aggregating multiple
heterogeneous data sources. There are mainly two reasons that we choose this technique. First,
in heterogeneous learning, ensemble approach is a natural choice since it is not straightforward
to come up with a single model to deal with multiple heterogeneous data sources. Second, it
is required that the prediction model to be efficient since large dataset is used as input. As
such, gradient boosting tree is a clear option, especially given that it can be easily deployed in a
distributed computing environment. Note that there are some other ensemble learning researches
developed with the idea of consensus. For instance, [29] is proposed to perform clustering via an
ensemble learning approach. The basic idea is to model the pairwise relationships from multiple
sources, and construct the “belief” graphs that maximizes the consensus among the data sources.
Furthermore, a generalized unsupervised learning model is proposed in [30], which also adopts
the idea of aggregating multiple data sources via consensus principle. However, so far as we



Table 1: Symbol definition
Symbol Definition

x
(i)
j ∈ Rdi The j-th data (column vector) in the i-th source (the i-th feature space).

Gg The g-th relational graph.
Ui The set of unlabeled data in the i-th data source.
fi(x) The prediction model built from the i-th data source.
C Consensus constraint.
G Graph connectivity constraint.
T Set of labeled data.

know, although there are several ensemble methods proposed to aggregate heterogeneous sources
in the unsupervised learning framework (as in [29, 30]), there is only a few proposed to conduct
supervised heterogeneous learning. Furthermore, the proposed model also borrows the idea from
the research of multiple kernel learning [31]. The idea in MKL research is to use multiple kernels
in formulating a learning process. In this way, the learning model itself will pick the best kernels
to improve the result. In this paper, the proposed model attacks a more general but more
challenging problem. It aims at choosing the optimal data sources, among which some of them
have totally different statistics and data structures.

3 Problem Formulation

In this section, we formally define the problem of heterogeneous learning, and then introduce a
general learning objective. In heterogeneous learning, data can be described in heterogeneous
feature spaces from multiple sources. Traditional vector-based features are denoted with the
column vectors x

(j)
i ∈ Rdj corresponding to the i-th data in the j-th source (or the j-th feature

space) whose dimension is dj. In matrix form, X(j) = [x
(j)
1 ,x

(j)
2 , · · · ,x(j)

m ] ∈ Rdj×m is the dataset
in the j-th feature space where m is the sample size. Different from vector-based features, graph
relational features describe the relationships between instances. In other words, they are graphs
representing connectivity/similarity of the data. Specifically, we denote Gg =< Vg, Eg > as the
g-th graph where Vg is the set of nodes and Eg ⊆ Vg×Vg is the set of edges. We assume that the
features from the same data source are from the same feature space, and hence each data source
has a corresponding feature space. Furthermore, different data sources may provide different
sets of instances. In other words, some instances exist in some data sources, but are missing in
the others. Thus, heterogeneous learning is a machine learning scenario where we consider data
from different sources, but they may (1) have different sets of instances, (2) have different feature
spaces, and (3) have multiple network based (graph) datasets. Hence, we have p data sources
providing vector-based features X(1), · · · , X(p) and q data sources providing relational networks
G1, · · · , Gq. The aim is to derive learning models (classification, regression or clustering) by
collectively and judiciously using the p + q data sources. A set of important symbols in the
remaining of the paper are summarized in Table 1.

4 Gradient Boosting Consensus

In this section, we describe the general framework of the proposed GBC model and its theoretical
foundations.



4.1 The GBC framework In order to use multiple data sources, the objective function aims
at minimizing the overall empirical loss in all data sources, with two more constraints. First,
the overlapping instances should have similar predictions from the models trained on different
data sources, and we call this the principle of consensus. Second, when graph relational data is
provided, the connected data should have similar predictions, and we call this the principle of
connectivity similarity. In summary, the objective function can be written as follows:

minL =
∑
i

wi
∑
x∈T

L(fi(x), y)

s.t. C
(
f ,w

)
= 0

G
(
f ,w

)
= 0

(4.1)

where L(fi(x), y) is the empirical loss on the set of training data T , wi is the weight of importance
of the i-th data source, which is discussed in Section 4.3. Furthermore, the two constraints
C
(
f ,w

)
= 0 and G

(
f ,w

)
= 0 are the two assumptions discussed above, which are the principle of

consensus and principle of connectivity similarity, respectively. More specifically, the consensus
constraint C

(
f ,w

)
= 0 is defined as follows:

C
(
f ,w

)
=
∑
i

wi
∑
x∈Ui

L
(
fi(x),E

(
f(x)

))
E
(
f(x)

)
=

∑
{i|x∈Ui}

wifi(x)
(4.2)

s.t.
∑
i

wi = 1

It first calculates the expected prediction E
(
f(x)

)
of a given unlabeled instance x, by summa-

rizing the current predictions from multiple data sources
∑
{i|x∈Ui}wifi(x). This expectation is

computed only from the data sources that contain x; in other words, it is from the data sources
whose indices are in the set {i|x ∈ Ui} where Ui is the set of unlabeled instances in the i-th data
source. Hence, if the j-th data source does not have record of x, it will not be used to calcu-
late the expected prediction. This strategy enables GBC to handle non-overlapping instances in
multiple data sources, and uses overlapping instances to improve the consensus. Eq. 4.2 forces
the predictions of x (e.g., f1(x), f2(x), · · · ) to be close to E

(
f(x)

)
.

Furthermore, according to the principle of connectivity similarity, we introduce another
constraint G

(
f ,w

)
as follows:

G
(
f ,w

)
=
∑
i

wi
∑
x∈Ui

L
(
fi(x), Ẽi

(
f(x)

)
Ẽi
(
f(x)

)
=
∑
g

ŵg
|{(z, x) ∈ Gg}|

∑
(z,x)∈Gg

fi(z)
(4.3)

s.t.
∑
g

ŵg = 1



The above constraint encourages connected data to have similar predictions. It works by
calculating the graph-based expected prediction of x by looking at the average prediction
( 1
|{(z,x)∈Gg}|

∑
(z,x)∈Gg fi(z)) of all its connected neighbors (z’s). If there are multiple graphs,

all the expected predictions are summarized by the weights ŵg.
We use the method of Lagrange multipliers [32] to solve the constraint optimization in Eq. 4.1.

The objective function becomes

minL =
∑
i

wi
∑
x∈T

L(fi(x), y) + λ0C
(
f ,w

)
+ λ1G

(
f ,w

)
(4.4)

where the two constraints C
(
f ,w

)
and G

(
f ,w

)
are regularized by Lagrange multipliers λ0 and

λ1. These parameters are determined by cross-validation, which is detailed in Section 5. Note
that in Eq. 4.4, the weights wi and ŵg (i, g = 1, 2, · · · ) are essential. On one hand, the wis
are introduced to assign different weights to different vector-based data sources. Intuitively, if
the t-th data source is more informative, wt should be large. On the other hand, the ŵgs are
the weights for the graph relational data sources. Similarly, the aim is to give high weights to
important graph data sources, while deemphasizing the noisy ones. We define different weight
symbols (wi and ŵg) for the data sources with vector-based features (wi) and graph relational
features (ŵg). The values of the weights are automatically learned and updated in the training
process, as discussed in Section 4.3.

4.2 Model training of GBC We use stochastic gradient descent [26] to solve the optimization
problem in Eq. 4.4. In general, it is an iterated algorithm that updates the prediction functions
f(x) in the following way:

f(x)← f(x)− ρ ∂L
∂f(x)

It is updated iteratively until a convergence condition is satisfied. Specifically, inspired by
gradient boosting decision trees (or GBDT [26]), a regression tree is built to fit the gradient
∂L
∂f(x)

, and the best parameter ρ is explored via line search [26]. Note that the calculation of ∂L
∂f(x)

depends on the loss function L(f, y) as reflected in Eq. 4.1. In the following, we use the L-2
loss (for regression problems) and the binary logistic loss (for binary classification problem) as
examples:

GBC with L-2 Loss: In order to update the prediction function of the i-th data source, we
follow the gradient descent formula as follows.

fi(x)← fi(x)− ρ ∂L
∂fi(x)

(4.5)

If the L-2 loss is used in L, we have

∂L
∂fi(x)

=2wi

(∑
x∈T

(fi(x)− y) + λ0
∑
x∈U

(fi(x)− E)

+ λ1
∑
x∈U

(fi(x)− Ẽi)
)



The L-2 loss is a straightforward loss function for the GBC model, and it is used to perform
regression tasks in Section 5.

GBC with Logistic Loss: With logistic loss, the partial derivative in Eq. 4.5 becomes:

∂L
∂fi(x)

=wi

(∑
x∈T

−ye−yfi(x)

1 + e−yfi(x)
+ λ0

∑
x∈U

−Ee−Efi(x)

1 + e−Efi(x)

+ λ1
∑
x∈U

−Ẽe−Ẽfi(x)

1 + e−Ẽfi(x)

)
Note that the above formula uses the binary logistic loss where y = −1 or y = 1, but one can
easily extend this model to tackle multi-class problems by using the one-against-others strategy.
In Section 5, we adopt this strategy to handle multi-class problems.

With the updating rule, we can build the GBC model as described in Algorithm 1. It first
finds the initial prediction models for all data sources in Step 1. Then, it goes into the iteration
(Step 3 to Step 11) that generates a series of decision trees. The basic idea is to follow the
updating rule in Eq. 4.5, and build a decision tree gi(x

i) to fit the partial derivative of the loss
(Step 5). Furthermore, we follow the idea of [26], and let the number of iterations N be set by
users. In the experiment, it is determined by cross-validation.

Then given a new data x, the predicted output is

f̂(x) = P(
∑

ωif̂i(x
i)) (4.6)

where P(y) is a prediction generation function, where P(y) = y in regression problems, and
P(y) = 1 iff y > 0 (P(y) = −1 otherwise) in binary classification problems.

4.3 Weight Learning In the objective function described in Eq. 4.4, one important element
is the set of weights (wi and ŵg) for the data sources. Ideally, informative data sources will have
high weights, and noisy data sources will have low weights. As such, the proposed GBC model
can judiciously filter out the data sources that are noisy. To this aim, we design the weights by
looking at the empirical loss of the model trained from the data source. Specifically, if a data
source induces large loss, its weight should be low. Following this intuition, we design the weight
as follows:

wi = exp
(
−
∑
x∈L

L
(
fi(x), y

)
/z
)

(4.10)

where L
(
fi(x), y

)
is the empirical loss of the model trained from the i-th data source, and z is a

normalization constant to ensure the summation of wis equals to one. Note that the definition
of the weight wi is derived from the weighting matrix in normalized cut [33]. The exponential
part can effectively give penalty to large loss. Hence, wi will be large if the empirical loss of the
i-th data source is small; it becomes small if the loss is large. It is proven in Theorem 4.1 that
the updating rule of the weights in Eq. 4.10 can result in a smaller error bound. Similarly, we
define the weights for graph data sources as follows:

wg = exp
(
− 1

c

∑
xga∼xgb

∑
i

wiL
(
fi(xa), fi(xb)

)
/z
)

(4.11)



Input: Data from different sources (including vector-based and graph data): X1, X2,
· · · , Xp, Expected outputs (labels or regression values) of a subset of data Y .
Number of iterations N .

Output: The prediction model GBC f̂(x).
Initialize f̂i(x) to be a constant such that f̂i(x) = arg minρi

∑
x∈L L(ρi, y) for1

i = 1, 2, · · · , p.
Initialize wi = 1

p
.2

for t = 1, 2, · · · , N do3

for i = 1, 2, · · · , p do4

For all x(i), compute the negative gradient with respect to f(x(i)):5

zi = − ∂

∂fi(x(i))
L
(
f(x),w

)
(4.7)

where L is defined in Eq. 4.4 with both vector-based and graph data.
Fit a regression model gi(x

(i)) that predicts zi’s from x(i)’s.6

Line search to find the optimal gradient descent step size as7

ρi = arg min
ρi
L
(
f̂i(x) + ρigi(x

(i)),w
)

(4.8)

Update the estimate of f̂i(x
(i)) as8

f̂i(x
(i))← f̂i(x

(i)) + ρigi(x
(i)) (4.9)

end9

Update w as Eq. 4.10 and Eq. 4.11.10

end11

f̂(x) = P(
∑
ωif̂i(x

(i)))12

Algorithm 1: Gradient Boosting Consensus

where L
(
fi(xa), fi(xb)

)
is the pairwise loss that evaluates the difference between the two

predictions fi(xa) and fi(xb). The idea behind Eq. 4.11 is to evaluate whether a graph can
link similar instances together. If most of the connected instances have similar predictions, the
graph is considered to be informative. Note that both the weights in Eq. 4.10 and the weights
in Eq. 4.11 are updated at each iteration. By replacing them into Eq. 4.4, one can observe
that the objective function of the GBC model is adaptively updated at each iteration. In other
words, at the initial step, each data source will be given equal weights; but after several iterations,
informative data sources will have higher learning weights, and the objective function will “trust”
more the informative data sources. Note that this is a very important setting in dealing with the
case that the consensus assumption does not hold. In this situation, the weight learning process
will drop the weights of other data sources close to zero. The whole model will be degraded to
a normal GBDT.



4.4 Generalization bounds In this section, we consider the incompatibility framework in [34]
and [35] to explain the proposed GBC model. Specifically, we show that the weight learning
process described in Section 4.3 can help reduce an error bound. For the sake of simplicity,
we consider the case where we have two data sources X1 and X2, and the case with more data
sources can be analyzed with similar logic. Note that the goal is to learn a pair of predictors
(f1; f2), where f1 : X1 → Ŷ and f2 : X2 → Ŷ , and Ŷ is the prediction space. Further denote F1

and F2 as the hypothesis classes of interest, consisting of functions from X1 (and, respectively,
X2 ) to the prediction space Ŷ . Denote by L(f1) the expected loss of f1, and L(f2) is similarly
defined. Let a Bayes optimal predictor with respect to loss L be denoted as f ∗. We now apply
the incompatibility framework for the multi-view setting [34] to study GBC. We first define the
incompatibility function χ : F1×F2 → R+, and some t ≥ 0 as those pairs of functions which are
compatible to the tune of t, which can be written as:

Cχ(t) = {(f1, f2) : f1 ∈ F1, f2 ∈ F2 and E[χ(f1, f2)] ≤ t}

Intuitively, the function Cχ(t) captures the set of function pairs f1 and f2 that are compatible
with respect to a “maximal expected difference” t. From [34], it is proven that there exists a
symmetric function d : F1 ×F2, and a monotonically increasing non-negative function Φ on the
reals such that for all f ,

E[d(f1(x); f2(x))] ≤ Φ(L(f1)− L(f2))

With these functions at hand, we can derive the following theorems:

Theorem 4.1. Let |L(f1) − L(f ∗)| < ε1 and |L(f2) − L(f ∗)| < ε2, then for the incompatibility

function Cχ(t), if we set χ = d, for t = cd(Φ(
√

2ε1ε2
ε1+ε2

) + Φ(εbayes)) where cd is a constant depends

on the function d [34], we have

inf
(f1,f2)∈Cχ(t)

LGBC(f1, f2) ≤ L(f ∗) + εbayes +

√
2ε1ε2
ε1 + ε2

(4.12)

Proof. Note that |L(f1) − L(f ∗)| < ε1 and |L(f2) − L(f ∗)| < ε2, and the proposed model GBC
adopts a weighted strategy linear to the expected loss, which is approximately LGBC(f1, f2) =
ε2

ε1+ε2
L(f1) + ε1

ε1+ε2
L(f2). According to Lemma 8 in [35], we have E[χ(f1, f2)] ≤ c2d(Φ(

√
2ε1ε2
ε1+ε2

) +

Φ(εbayes)), and
min

(f1,f2)∈Cχ(t)
LGBC(f1, f2) ≤ LGBC(f∗1, f∗2) + εbayes (4.13)

With Lemma 7 in [35], we can get

min
(f1,f2)∈Cχ(t)

LGBC(f1, f2) ≤ L(f ∗) + εbayes +

√
2ε1ε2
ε1 + ε2

(4.14)

�

Similarily, we can derive the error bound of GBC in a transductive setting.



Theorem 4.2. Consider the transductive formula Eq. 4 in [35]. Given the regularized parameter
λ > 0, we denote Lλ(f) as the expected loss with the regularized parameter λ. If we set
λc = λ

4(K+λ)2
√

2ε1ε2
ε1+ε2

then for the pair of functions (f1, f2) ∈ F1 × F2 returned by the transductive

learning algorithm, with probability at least 1− δ over labeled samples,

LλGBC(f1, f2) ≤ Lλ(f ∗) +
1√
n

(
2 + 3

√
ln(2

δ
)

2

)
+2CLipR̂(Ĉχ(

1

λc
)) +

√
2ε1ε2
ε1 + ε2

(4.15)

where n is the number of labeled examples, and CLip is the Lipschitz constant for the loss, and

R̂(Ĉχ( 1
λc

)) is a term bounded by the number of unlabeled examples and the bound of the losses.

Proof. We first note that |Lλ(f1) − Lλ(f ∗)| < ε1 and |L(f2)
λ − Lλ(f ∗)| < ε2. Similar to the

logic in Theorem 4.1, GBC employs a weighting strategy which is linear to the expected loss:
LλGBC(f1, f2) = ε2

ε1+ε2
Lλ(f1) + ε1

ε1+ε2
Lλ(f2). With Lemma 7 in [35], we then have

|Lλ(f1)− LλGBC|+ |Lλ(f1)− LλGBC|

≤
√

ε2
ε1 + ε2

√
ε1 +

√
ε1

ε1 + ε2

√
ε2

= 2

√
ε1ε2
ε1 + ε2

(4.16)

Hence, we can further get the following relationship:

E[χ(f1, f2)] ≤ c2d(E[χ(f1, y1)] + E[χ(y1, y2)] + E[χ(f2, y2)])

≤ c2d(L
λ(f1)− Lλ(f ∗) + Lλ(f2)− Lλ(f ∗) + 2Φ(εbayes))

≤ c2d(Φ(

√
2ε1ε2
ε1 + ε2

) + Φ(εbayes))

(4.17)

and
min

(f1,f2)∈Cχ(t)
LλGBC(f1, f2) ≤ LλGBC(f∗1, f∗2) + εbayes (4.18)

We then have

LλGBC(f1, f2) ≤ Lλ(f ∗) +
1√
n

(
2 + 3

√
ln(2

δ
)

2

)
+2CLipR̂(Ĉχ(

1

λc
)) +

√
2ε1ε2
ε1 + ε2

(4.19)

�

Note that Theorem 4.1 and Theorem 4.2 derive the error bounds of GBC in inductive and
transductive setting respectively. In effect, the weighting strategy reduces the last term of



the error bound to
√

2ε1ε2
ε1+ε2

, as compared to the equal-weighting strategy whose last term is√
ε1+ε2

2
[34]. Hence, the weighting strategy induces a tighter bound since

√
2ε1ε2
ε1+ε2

≤
√

ε1+ε2
2

. It is

important to note that if the the predictions of different data sources vary significantly (|ε1− ε2|
is large), the proposed weighting strategy has a much tighter bound than the equal-weighting
strategy. In other words, if there are some noisy data sources that potentially lead to large error
rate, GBC can effectively reduce their effect. This is an important property of GBC to handle
noisy data sources. This strategy is evaluated empirically in the next section.

5 Experiments

In this section, we report four sets of experiments that were conducted in order to evaluate the
proposed GBC model applied to multiple data sources. We aim to answer the following questions:

• Can GBC make good use of multiple data sources? Can it beat other more straightforward
strategies?

• What is the performance of GBC if there exist non-overlapping instances in different data
sources?

• How does GBC perform on big dataset?

5.1 Datasets The aim of the first set of experiments is to predict movie ratings from the
IMDB database.2 Note that there are 10 data sources in this task. For example, there is a
data source about the plots of the movies, and a data source about the techniques used in the
movies (e.g., 3D IMAX). Furthermore, there are several data sources providing different graph
relational data about the movies. For example, in a director graph, two movies are connected if
they have the same director. A summary of the different data sources can be found in Table 2.
It is important to note that each of the data sources may provide certain useful information for
predicting the ratings of the movies. For instance, the Genre database may reflect that certain
types of movies are likely to have high ratings (e.g., Fantasy); the Director graph database
implicitly infers movie ratings from similar movies of the same director (e.g., Steven Spielberg
has many high-rating movies.). Thus, it is desirable to incorporate different types of data sources
to give a more accurate movie rating prediction. This is an essential task for online TV/movie
recommendation, such as the famous $1,000,000 Netflix prize [36].

The second set of experiments is about handwritten number recognition. The dataset contains
2000 handwritten numerals (“0”–“9”) extracted from a collection of Dutch utility maps.3 The
handwritten numbers are scanned and digitized as binary images. They are represented in terms
of the following seven data sources with different vector-based feature spaces: (1) 76 Fourier
coefficients of the character shapes, (2) 216 profile correlations, (3) 64 Karhunen-Love coefficients,
(4) 240 pixel averages in 2 × 3 windows, (5) 47 Zernike moments, (6) a graph dataset constructed
from the morphological similarity (i.e., two objects are connected if they have similar morphology
appearance), and (7) a graph generated with the same method as (6), but with random Gaussian
noise imposed in the morphological similarity. This dataset is included to test the performance

2http://www.imdb.com/
3http://archive.ics.uci.edu/ml/datasets/Multiple+Features



Table 2: IMDB Movie Rating Prediction
Data source Type of features

Quote Database Text
Plot Database Text
Technology Database Nominal
Sound Technology Database Nominal
Running Time Database Real
Genre Database Binary
Actor Graph Graph
Actress Graph Graph
Director Graph Graph
Writter Graph Graph

of GBC on noisy data. The aim is to classify a given object to one of the ten classes (“0”–“9”).
The statistics of the dataset are summarized in Table 3.

The third set of datasets is downloaded from the UMD collective classification database 4.
The database consists of 1293 different attacks in one of the six labels indicating the type of
the attack: arson, bombing, kidnapping, NBCR attack, weapon attack and other attack. Each
attack is described by a binary value vector of attributes whose entries indicate the absence or
presence of a feature. There are a total of 106 distinct vector-based features, along with three
sets of relational features. One set connects the attacks together if they happened in the same
location; the other connects the attacks if they are planned by the same organization. In order
to perform robust evaluation of the proposed GBC model, we add another data source based on
the vector-based dataset, but with a random Gaussian noise N (0, 1). Again, this is to test the
capability of the proposed model to handle noise.

The fourth set of datasets is collected from a tier-1 telegraph network provider in the U.S. We
study a subset of the demographic database with over 500,000 anonymous users. The database
records 196 demographic features per user, which includes education level, age group, language,
hobbies, etc.. As the objective in [37], we aim at predicting four demographic features, which
include the age group, gender, credit level, and whether the user rents the house. For the
task of predicting the age group and credit level, we only concern whether the user belongs to
a specific group of interest (e.g., mid age and good credit level). As a result, all four tasks
have binary classification labels. Furthermore, we construct 90 different social graphs from the
phone call networks similar to the ones introduced in [38]. These generated social graphs are
considered to be close approximations to the real-world social connections, and they cover the
social connections among anonymous users in different time periods. In summary, we have one
vector-based demographic dataset and 90 graph datasets, and each of them involves a subset of
the 500,000 anonymous users. Another very important characteristic is that the dataset contains
substantial missing values, owing to the difficulty of obtaining the demographic features (e.g., love
fishing? speak Japanese?, etc.). In the dataset, over 50% of samples contain over 60% of missing
values. Classic feature based algorithms such as SVM cannot easily handle this case. On the

4http://www.cs.umd.edu/projects/linqs/projects/lbc/

index.html



contrary, GBC is designed to fit to the situation with missing values and with many heterogeneous
data sources. We design four prediction tasks to predict four important demographic features of
the samples, and they include the prediction of the age group, gender, credit level, and whether
the user rents the house. Our objective is then to evaluate the four prediction tasks, all of which
involve big and heterogeneous data.

5.2 Comparison Methods and Evaluations It is important to emphasize again that there
is no previous model that can handle the same problem directly; i.e., building a learning model
from multiple graphs and multiple vector-based datasets with some non-overlapping instances.
Furthermore, as far as we know, there is no state-of-the-art approaches that use the benchmark
datasets described in the previous section in the same way. For instance, in the movie prediction
dataset, we crawl the 10 data sources directly from IMDB and use them collectively in learning.
In the case of the number recognition dataset, we have two graph data sources, which are
different from previous approaches that only look at vector-based features [39], clustering [40],
or feature selection problems [41]. In order to evaluate the proposed GBC model, we design
a straightforward comparison strategy, which is to directly join all features together. In other
words, given the sources with vector-based features X(1), · · · , X(p) and the adjacency matrices
of the graphs M(1), · · · , M(q), the joined features can be represented as follows:

X = [X(1)T , · · · ,X(p)T ,M(1)T , · · · ,M(q)T ]T (5.20)

Since there is only one set of joined features, traditional learning algorithms can be applied
on it to give predictions (each row is an instance; each column is a feature from a specific source).
We include support vector machines (SVM) in the experiments as it is used widely in practice.
Note that in GBC, the consensus term in Eq. 4.2 and the graph similarity term in Eq. 4.3 can use
unlabeled data to improve the learning. Hence, we also compare it with semi-supervised learning
models. Specifically, semi-supervised SVM (Semi-SVM) with a self-learning technique [42] is
used as the second comparison model. Note that we have four tasks in the experiment where
one of them (i.e., the movie rating prediction task) is a regression task. In this task, regression
SVM [43] is used to give predictions. Additionaly, since the proposed model is derived from
gradient boosting decision trees, GBDT [26] is used as the third comparison model, and its
semi-supervised version [42] is included as well. It is important to note that in order to use the
joined features from Eq. 5.20, these comparison models require that there is no non-overlapping
instances. In other words, all data sources should have records of all instances; otherwise, the
joined features will have many missing values since some data sources may not have records of
the corresponding instances. To evaluate GBC more comprehensively, we thus conducted the
experiments on two settings:

• Uniform setting: the first setting is to force all data sources to contain records of all
instances. We only look at the instances that have records in all data sources. Table 3
presents the statistics of the datasets in this setting. In this case, we can easily join the
features from different sources as in Eq. 5.20. Note that we do not perform the uniform
setting in AT&T’s big dataset. The reason is that there is only a couple of users that appear
in all 91 different data sources. The uniform setting thus cannot generate statistically
significant results on AT&T’s big dataset.



Table 3: Data Descriptions
Task # of data # of data sources Average dimension Predictions

Movie Rating Prediction 3000 10 (4 graph and 6 others) 896 (×10) Regression
Number Recognition 2000 7 (2 graph and 5 others) 378 (×7) 10 labels
Terrorist Attack Classification 1293 4 (2 graph and 2 others) 422 (×4) 6 labels
AT&T Datasets 500,000 91 499,997 (×91) 2 labels
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Figure 3: All data sources record the same set of objects (overlapping objects with different
features).

• Non-overlapping setting: the second setting is to allow different data sources to have some
non-overlapping instances. Thus, an instance described in one data source may not appear
in other data sources. This setting is more realistic, as the example in Fig. 1. The proposed
GBC model is able to handle this case, since it allows non-overlapping instances. However,
for the comparison method, there will be many missing values in the joined features as
discussed above. In this case, we replaced the missing values with the average values of the
corresponding features. In this setting, 30% of the instances do not have records in half of
the data sources.

We conducted experiments on the above two settings. During each run, we randomly selected
a certain portion of examples as training data, keeping the others as test data. For the same
training set size, we randomly selected the set of training data 10 times and the rests were
used as test data, and the results were averaged over the 10 runs. The experiment results are
reported with different training set sizes. Note that the proposed GBC model can be used for
both classification and regression. We used error rate to evaluate the results for classification
tasks, and root mean square error (RMSE) for regression tasks.

5.3 Analysis of the Experiments Our aim is to study the performance of the proposed GBC
model in the two setting described above: uniform and non-overlapping settings. The experiment
results are summarized in Fig. 3 and Fig. 4, respectively. The x-axes record different percentage
of training data (while the remainder of the data is used for evaluation), and the y-axes report
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Figure 4: Each data source is independent (with 30% of overall non-overlapping instances).

the errors of the corresponding learning model.
We observe two major phenomena in the experiments. Firstly, the proposed GBC model

effectively reduces the error rate as compared to the other learning models in both settings. It
is especially obvious in the movie rating prediction dataset where 10 data sources are used to
build the model. In this dataset, GBC reduces the error rate by as much as 80% in the first
setting (when there are 90% of training instances), and 60% in the second setting (when there
are 10% of training instances). This shows that GBC is especially advantageous when a large
number of data sources are available. We further analyze this phenomenon in the next section
with Table 4. On the other hand, the comparison models have to deal with a longer and noisier
feature vector. GBC beats the four approaches by judiciously reducing the noise (as discussed
in Section 4.3 and 4.4). Secondly, we can observe that GBC outperforms the other approaches
significantly and substantially in the second setting (Fig. 4) where some instances do not have
records on all data sources. As analyzed in the previous section, this is one of the advantages of
GBC over the comparison models that have to deal with missing values.

It is also interesting to analyze the performance of GBC on the demographic prediction task.
Recall that the learning task has at least three challenges. First, it contains a large set of samples
(over 500,000) as compared to normal machine learning tasks. Second, it has 91 different data
sources, among which one is a demographic dataset with around 200 features, and the other 90
data sources are social graphs. As a result, it generates over 45,000,000 joined features (as in
Eq. 5.20). Third, it contains substantial missing values (50% of samples miss 60% of features),
which brings in more difficulty in finding the valuable information. This is also the reason we
cannot conduct uniform setting on this big dataset, since there is only a couple of users that
appear in all 91 different data sources. The uniform setting thus cannot generate statistically
significant results. All the experiments reported in Fig. 6 were run on a distributed computing
system with the Condor framework. It can be clearly observed that GBC outperforms the other
comparison models in all four tasks. For instance, in the task of predicting genders, the error
rate has been reduced around 20% when there is 50% of training data, and 25% when there
is 90% of training examples. The good performance of GBC comes from its unique design to
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distill useful information from multiple heterogeneous data sources. Each of the individual data
source may be very noisy owing to the missing values and unknown data quality. However, GBC
is able to distinguish the useful data sources for the learning tasks, and judiciously uses them
in improving learning results. The distribution of the learned weights of the data sources are
plotted in Fig. 5. It can be shown that among the 91 data sources, some of them are very useful
(with large weights), while many of them are quite noisy and are assigned low weights. GBC is
able to judiciously treat them differently to achieve a better model.

6 Discussion

In this section, we would like to answer the following questions:

• To what extent GBC helps to integrate the knowledge from multiple sources, compared to
learn from each source independently? Specifically, how do the principles of consensus and
connectivity similarity help GBC?

• Is the weight learning algorithm necessary?

• Do we need multiple data sources? Does the number of data sources affects the
performance?

In GBC, both λ0 and λ1 (from Eq. 4.4) are determined by cross-validation. In the following
set of experiments, we tune the values of λ0 and λ1 in order to study the specific effects of the
consensus and connectivity terms. We compare the proposed GBC model with three algorithms
on the number recognition dataset in the uniform setting (i.e., all data sources contain all
instances):

• The first comparison model is to set λ0 to zero, and determine λ1 by cross-validation. In
this case, the consensus term is removed. In other words, the algorithm can only apply the
connectivity similarity principle. We denote this model as “GBC without consensus”.

• The second comparison model is to set λ1 to zero, and let λ0 be determined by cross-
validation. In other words, the connectivity similarity term is removed, and the algorithm
only depends on the empirical loss and the consensus term. We denote this model as “GBC
without graph”.

• The third comparison model is to set both λ0 and λ1 to 0. Hence, the remaining term is
the empirical loss, and it is identical to the traditional GBDT model.
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Figure 6: Demographic Prediction

The empirical results on the number recognition task are presented in Fig. 7. It can be
observed that all three models outperforms traditional GBDT. We draw two conclusions from
this experiment. First, as was already observed in previous experiments, learning from multiple
sources is advantageous. Specifically, the GBDT model builds classifiers for each of the data
source independently, and average the predictions at the last step. However, it does not
“communicate” the prediction models during training. As a result, it has the worst performance
in Fig. 7. Second, both the principle of consensus and the principle of connectivity similarity
improve the performance. Furthermore, it shows that the connectivity similarity term helps
improve the performance more when the number of training data is limited. For example, when
there are only 10% of training instances, the error rate of GBC with only the connectivity term
(i.e., GBC without consensus) is less than 9%, while that of GBC with only the consensus term
(i.e., GBC without Graph) is around 13%. This is because when the number of labeled training
data is limited, the graph connectivity serves as a more important source of information when
connecting unlabeled data with the limited labeled data. Again, it is important to note that
in GBC, the weights of different data sources are adjusted at each iteration. The aim is to
assign higher weights to the data sources that contain useful information, and filter out the noisy
sources. This step is analyzed as an important one in Theorem 4.1 since it can help reduce the
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Figure 8: Why is the weighting strategy necessary?

upper bound of the error rate. We specifically evaluate this strategy on the terrorist detection
task. Note that in order to perform a robust test, one of the vector-based sources contains
Gaussian noise, as described in Section 5.1. The empirical results on the terrorist detection task
are presented in Fig. 8. It can be clearly observed that the weighting strategy is reducing the
error rate by as much as 70%. Hence, an appropriate weighting strategy is an important step
when dealing with multiple data sources with unknown noise.

It is also interesting to evaluate to what extent GBC performance is improved as the number
of data sources increases. For this purpose, the movie rating prediction dataset is used as an
example. We first study the case when there is only one data source. In order to do so, we run
GBC on each of the data source independently, then on 2 and 4 data sources. In the experiments
with 2 data sources, we randomly selected 2 sources from the pool (Table 2) as inputs to GBC.
These random selections of data sources were performed 10 times, and the average error is
reported in Table 4. A similar strategy was implemented to conduct the experiment with 4 data
sources. In Table 4, the results are reported with different percentages of training data, and the
best performances are highlighted with bold letters. It can be observed that the performance
with only one data source is the worst, and has high root mean square error and high variance.
With more data sources available, the performance of GBC tends to be better. This is because



Table 4: Effect of different number of sources. Reported results are RMSE with variance in
parenthesis.
# of sources 10% 30% 50% 70% 90%

1 1.356 (0.358) 1.223 (0.290) 1.192 (0.257) 1.189 (0.258) 1.077 (0.223)
2 1.255 (0.237) 1.247 (0.293) 1.193 (0.229) 1.193 (0.150) 0.973 (0.216)
4 1.135 (0.138) 0.914 (0.114) 0.732 (0.153) 0.593 (0.105) 0.314 (0.092)

all 1.115 (0.158) 0.945 (0.116) 0.732 (0.152) 0.583 (0.059) 0.294 (0. 097)

each data source provides complementary information useful to build a comprehensive model of
the whole dataset.

7 Conclusion

This paper studies the problem of building a learning model from heterogeneous data sources.
Each source can contain traditional vector-based features or graph relational features, with
potentially non-overlapping sets of instances. As far as we know, there is no previous model
that can be directly applied to solve this problem. We propose a general framework derived
from gradient boosting, called gradient boosting consensus (GBC). The basic idea is to solve an
optimization problem that (1) minimizes the empirical loss, (2) encourages the predictions from
different data sources to be similar, and (3) encourages the predictions of connected data to be
similar. The objective function is solved by stochastic gradient boosting, with an incorporated
weighting strategy to adjust the importance of different data sources according to their usefulness.
Four sets of experiments were conducted, including movie rating prediction, number recognition,
terrorist detection, and AT&T’s challenging tasks with over 500,000 samples and 91 data sources.
We show that the proposed GBC model substantially reduce prediction error rate by as much
as 80%. Finally, several extended experiments are conducted to study specific properties of the
proposed algorithm and its robustness.
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