
ICE: Enabling Non-Experts to Build Models
Interactively for Large-Scale Lopsided Problems

Patrice Simard, David Chickering, Aparna Lakshmiratan,

Denis Charles, Léon Bottou, Carlos Garcia Jurado Suarez,
David Grangier, Saleema Amershi, Johan Verwey, Jina Suh

Microsoft Research
Redmond, WA

patrice@microsoft.com

ABSTRACT
Quick interaction between a human teacher and a learning

machine presents numerous benefits and challenges when
working with web-scale data. The human teacher guides the
machine towards accomplishing the task of interest. The learning
machine leverages big data to find examples that maximize the
training value of its interaction with the teacher. When the teacher
is restricted to labeling examples selected by the machine, this
problem is an instance of active learning. When the teacher can
provide additional information to the machine (e.g., suggestions
on what examples or predictive features should be used) as the
learning task progresses, then the problem becomes one of
interactive learning.

To accommodate the two-way communication channel needed
for efficient interactive learning, the teacher and the machine need
an environment that supports an interaction language. The
machine can access, process, and summarize more examples than
the teacher can see in a lifetime. Based on the machine’s output,
the teacher can revise the definition of the task or make it more
precise. Both the teacher and the machine continuously learn and
benefit from the interaction.

We have built a platform to (1) produce valuable and
deployable models and (2) support research on both the machine
learning and user interface challenges of the interactive learning
problem. The platform relies on a dedicated, low-latency,
distributed, in-memory architecture that allows us to construct
web-scale learning machines with quick interaction speed. The
purpose of this paper is to describe this architecture and
demonstrate how it supports our research efforts. Preliminary
results are presented as illustrations of the architecture but are not
the primary focus of the paper.

1. INTRODUCTION
The detection of rare concepts is helpful in several application

domains. In web search, for example, we might want to
distinguish book-review pages from the rest of the web. Other
applications include online advertising, retail monitoring, medical
imagery or telemetry. Machine Learning (ML) offers solutions to
building predictive models in such lopsided problems.

Current ML solutions to these problems typically involve a
“loop” of activity that works something like this. First, we collect
a sample of data to label. For lopsided problems where labeling is
not free, this sample is typically biased in some way to avoid
having to label too many examples. To appreciate this, suppose
that about one in every ten thousand web pages is a book-review
page, and we sample uniformly from the web to collect data to
label; if it requires on the order of a thousand examples of book-
review pages to predict them accurately, then we would have to

label on the order of ten million web pages before we had
sufficient data. Second, after collecting the data we need to have it
labeled, usually by human judges. Third, we need to design good
features that the machine-learning algorithm can use to model the
labels in the data. Good features for a book-review classifier, for
example, might be n-gram features that are more prevalent in
either book-review pages or non-book-review pages. Fourth, we
train a model on one subset of the labeled data, and evaluate its
performance on another subset. Depending on how satisfied we
are with the performance of the model, we can loop back to the
third step to choose better features (i.e., try to increase
performance on the existing data), we can loop back to the first
step to gather more data, possibly using our model to inform how
to bias the sample, or we can decide to deploy the model in our
application. After deployment, we might also decide to visit the
loop again if we observe unexpected costly errors.

There are two significant problems with this methodology
which limit its effectiveness. The first is that in order to be
successful, a machine-learning expert is likely required in more
than one of the steps: getting a biased sample to label that will
result in a model that generalizes to unbiased data is a difficult
ML problem, and designing features that work well might require
expert understanding of the ML training algorithm. Because
machine-learning experts can be hard to come by and expensive,
this limits the modeling problems that are deemed worth solving.

The second problem is that iterating through the steps of the
loop can take a very long time, due both to the work involved and
the coordination required of the (likely many) people involved. In
addition, because each iteration of the loop is costly, there is a
tendency to try to minimize the number of times we iterate, which
results in maximizing the number of labels we collect at each step.
But labeling large batches of data at each iteration results in a loss
of agility in the process. Suppose, for example, that after the first
iteration through the loop, the book-review model is predicting
that many magazine-review pages are being erroneously labeled
as book reviews. The system designer might decide that
magazine-review pages are, in fact, appropriate positives for the
problem at hand and want to change the definition of the rare
concept. But such a change in definition might invalidate much of
the labeled data.

To overcome these obstacles, we turn to interactive ML,
which interleaves human input, training, scoring, and machine
feedback in a real time loop. In this setting a single teacher
performs all of the functions of the domain expert, the labeler, and
the ML expert. At every step, the teacher learns from the machine
and the machine benefits from the human guidance. The feedback
allows the teacher to gain necessary (empirical) expertise to best

guide the training process without (theoretical) ML expertise.
With the proper architecture, instantaneous machine training and
evaluation over large datasets can shorten the typical loop above
to seconds per iteration. In addition, access to large datasets
enables the teacher to explore the data efficiently to surface rare
examples.

Figure 1 helps us visualize the “world view” of the teacher
and the machine during interactive ML. Consider again the book-
review classification example. Initially, from the teacher’s point
of view, book reviews are contained in the small blue circle and
all other pages are contained in the small grey circle. We imagine
a “ground truth”, represented by the two orange circles, of which
the teacher is not yet aware because of either ignorance or lack of
clarity in the definition of a book review. From the perspective of
an early stage classifier the book reviews look like the green oval.
Through the process of interactive ML, the goal is to get the blue
and green shapes to mold toward each other and converge on
ground truth.

We built a large scale interactive ML system called ICE
(Interactive Classification and Extraction) designed to leverage
the capabilities of both humans and machines. Specifically, ICE
enables ordinary people to train interactively both classifiers
(functions that map an input item to one or more discrete classes)
and extractors (functions that map an input item to a sequence of
annotated segments) using large datasets containing 100 million
examples or more. It allows teachers to build models on lopsided
problems in a few hours without the need to pre-filter the data.

Building a large scale interactive ML system is not without its
own research and engineering challenges. Interactivity requires us
to train models and compute their output over large datasets in
seconds. It also requires visualizations for the human to assess the
model performance, understand errors, and make the right
decisions in terms of the needed features or areas to explore. It
further requires an interface for non-experts to label and provide
features. Interactive learning also raises new questions for ML: Is
it possible to derive learning algorithms whose diagnosis is easier
for non-experts? Can we evaluate and even provide guarantees for
an active learning scenario in which the human teacher
dynamically refines the problem formulation?

The purpose of this paper is to describe the key features of our
system and the corresponding architectural decisions we made to
support these features. Our decisions were driven by the need to
balance both (1) traditional ML objectives such as generalization
accuracy, and (2) user-experience objectives such as efficiency,
understandability, simplicity, and empathy with the learning
algorithm.

The rest of this paper is organized as follows. First, we
describe how ICE enables ordinary people to build models from
scratch in a few hours. This includes describing ICE’s interactive
labeling and featuring loops, as well as introducing user
interaction with the ICE interface. Then, we describe the
distributed architecture required to enable interactive labeling and
featuring at the speed and scale necessary for maintaining user
engagement and effectiveness. Next, we present preliminary
results on using ICE to build classifiers over web page data.
Finally, we discuss open questions and related work.

2. ICE
In this section, we describe interactive labeling, interactive

featuring and the user interface of ICE. We designed our system
to allow a single teacher to train models interactively, and our
description emphasizes this bias. As we describe below, however,
we designed the system to encourage teachers to import others’
models and features into their own sessions to be used as features.
This functionality means that the value from a community of
teachers on ICE can be much more than the sum of the value from
each individual. We also envision ICE supporting cooperative
teaching scenarios, where multiple teachers contribute to the same
learning task [21].

2.1 Interactive Labeling
As discussed in Section 1, lopsided problems require us to

train models on a biased sample. When a teacher first starts
working with ICE (that is, when there is no model available to
help choose these examples), the teacher needs to have a
mechanism to reveal a-priori knowledge about the rare event in
order to extract examples. In ICE, we enable the teacher to search
the dataset for examples to label. Sampling by this approach
alone, however, can lead to an undesirable biases due to the
teacher not understanding or explicitly exploring the rare class to
its full extent. For instance, the teacher might not know about or
remember to retrieve all types of ethnic recipes. Consequently, a
recipe classifier built only from examples found by a teacher’s
search might perform poorly in a real-world deployment. To deal
with the teacher’s ignorance about the distribution, we enable
active learning to allow the system to select automatically
examples that are deemed valuable to label. In this framework,
teachers can be ignorant of the distribution as long as they can
correctly label items on demand.

After the initial ‘cold start’ period when no model is available
to help choose examples, ICE’s interactive labeling loop
alternates between the teacher labeling items and the system
selecting items to label next. At any point in time, the teacher can

Figure 1. The world according to the teacher and the

model.

!"#$%$&'(')*+,-'#
./"0/(12(%'*34'5

!"#$%$&'(')*+,-'#

!"#$%$&'(')*+,-'#
633"57$/8(%"(3-*##$9$'5

:'8*%$&'(')*+,-'#
;/./"0/(12(%'*34'5

:'8*%$&'(')*+,-'#

:'8*%$&'(')*+,-'#
. /"0/(12(%'*34'5

Figure 2. Typical distribution of a model score.

(

take the initiative to search for items to label with a query. A new
model is trained whenever sufficient additional labels have been
submitted by the teacher. New models are immediately applied to
the unlabeled data, producing a fresh score for each item. The
system samples the next items to label according to the latest
scores available. This active-learning strategy is efficient for
labeling because it focuses the �W�H�D�F�K�H�U�¶�V��attention on items that are
more likely to be mistakes and whose labels can yield better
subsequent models, resulting in faster learning overall (see
Section 4 on active learning). To appreciate this, consider Figure
2, which shows the number of items in the dataset as a function of
the probability of a rare class according to a typical probabilistic
classifier. Active-�O�H�D�U�Q�L�Q�J���V�D�P�S�O�L�Q�J���V�W�U�D�W�H�J�L�H�V���Z�L�O�O���V�D�P�S�O�H���³�W�R���W�K�H��
�U�L�J�K�W�´�� �W�R�� �D�Y�R�L�G�� �W�K�H�� �Y�D�V�W�� �P�D�M�R�U�L�W�\�� �R�I�� �L�W�H�P�V�� �W�K�D�W�� �K�D�Y�H�� �D�O�P�R�V�W�� �Q�R��
chance (according to the current model) of being a positive.

From the system�¶�V perspective, interactive labeling is a time-
sensitive and demanding process. As the teacher provides labels,
the system produces a model, which involves training and
validating hyper-parameters (e.g. regularization parameters) in a
few seconds. Automatic validation is important because non-
expert teachers are not expected to provide hyper-parameters, and
it is computationally intensive because it trains a family of models
from which to select. Once the selected model is available, the
scoring computation starts. Our infrastructure computes the score
of each item, relying on parallel processes on multiple machines
(see Section 3). Depending on the size of the dataset, scoring all
items might not be performed in a few seconds. Even in this case,
the teacher should not wait, the scores should not be outdated, and
all of the data should be available to sample. We therefore keep
the most recent computed score in memory for all items. We also
score each item to be shown to the teacher with the latest scorer if
needed. To maximize score freshness, scoring with a new model
starts by interrupting the previous scorer and scoring begins where
the previous scorer was stopped. Note that the quality of the
selected items to be labeled next may degrade if too few items
have been re-scored since the last scorer was produced. Efficient
scoring in ICE is discussed further in Section 3.

Given a set of features (see Section 2.2), interactive labeling
implements a fine-grained version of the traditional collect-label-
feature-train-evaluate loop by updating the model within seconds
after a teacher action. This means that the teacher is always
confronted with the samples based on the most recent model. The
teacher also has access to performance estimates for this model,
which avoids the need to fix problems that have already been
solved by new labels or features. Additionally, interactive labeling
allows the teacher to revisit the concept definition over time
without incurring such a high cost as in the traditional loop. The
teacher can edit the previous labels or submit a new query to
reflect this change at any point in time, which is much more
flexible than (e.g.) writing new labeling guidelines to be sent
along with data to a third party labeler. This highlights the benefit
of interactive labeling for exploration. Our strategy not only
enables the teachers to provide semantic information but also
provides them with the seamless assistance of a large-scale system
to evolve their mental models of the task.

2.2 Interactive Featuring
The performance of ML algorithms depends on the

representations of the data, or features. The choice of features can
greatly impact the number of training labels required to achieve a
given test accuracy. The choice also affects the overall running
time of training/testing and impacts the ability for human
operators to understand model scores and diagnose accuracy
issues. In particular, the set of features should achieve a delicate
balance between (1) being representative enough so that the
model can discriminate between items for the task at hand and (2)
being simple enough to prevent the learning algorithm from being
influenced by irrelevant distinctions between items when few
training labels are available. Consequently, ML experts take great
care when defining a feature set. The appropriate set is often task-
specific, and its definition requires alternating between training a
model, looking at its errors, and implementing or refining feature
functions. This task requires both intuition about the semantics of
the problem and understanding of the model errors.

ICE enables non-expert teachers to define the appropriate
feature set through interactive featuring. Interactive featuring
includes the creation, editing, and refinement of features. It
integrates with interactive labeling in the same user interface (see
Section 2.3). At any point in time, the teacher can decide to label
or feature by inspecting the model performance and exploring its
errors. Interactive featuring encourages the teacher to interactively
compose a small set of useful features, keeping the complexity of
the model to a minimum. This strategy avoids complex models
with large number of features which are likely to work well in an
initial phase, but may quickly leave the teacher with an intricate
model that no obvious decision can improve. After providing each
feature or label, the teacher can explore the model errors, interpret
them and decide how to fix them through search, active learning
or featuring. This decision of how to fix errors can be driven by
contrasting training and test errors: training errors often can
surface missing features, showing that the model is blind to some
types of item characteristics, whereas testing errors can often
suggest that more labels are needed for a particular area of
examples.

ICE allows teachers to add three types of features: (1) built-in
features, (2) features that are themselves learned models built by
ICE teachers, and (3) teacher-defined features. Some of these
features support per-item visualization to help the teacher
understand their effect. Built-in features correspond to typical
features used in the literature for classification and extraction, e.g.
bag-of-words, regular expressions for text tasks, and edge
detectors for images. Features that are learned models offer the
opportunity for teachers to decompose their tasks into sub-
problems. These features also offer the ability for a teacher to re-
use relevant models already built by someone else. For instance, a
teacher working on image classification to detect mountains can
re-use or build a separate model to discriminate between indoor
and outdoor pictures. Teacher-defined features includes generic
functions that teachers can import by providing a dynamically
linked library or features that can be edited from the ICE interface
itself.

Figure 3. The main ICE interface (left) along with a supplementary window displaying performance metrics (right). On the

right of the main ICE interface, the user can inspect and label data (e.g., four pages are displayed in this figure, three labeled
positive and one negative). The left panel contains features already supplied by the user for this classifier via active featuring.

The supplementary window on the right display standard performance metrics (e.g., precision and recall) to help the user
monitor their classifier’s progress.

In the following, we illustrate the benefit of ICE-editable
features by describing dictionaries, a type of feature that the
teacher can edit interactively for text tasks. A dictionary defines a
semantic concept through a list of related words. For instance, a
set of months ���H���J������ �³�-�D�Q�X�D�U�\�´���� �³�)�H�E�U�X�D�U�\� ,́�«���� �³�'�H�F�H�P�E�H�U�´)
�F�D�S�W�X�U�H�V���W�K�H���³�0�R�Q�W�K�V�´���F�R�Q�F�H�S�W�����7�K�H���Z�R�U�G�V���L�Q���D���G�L�F�W�L�R�Q�D�U�\���W�R�J�H�W�K�H�U��
form a simple model for a token-level feature that optionally can
be aggregated at a document level by computing statistics
between a document and the given dictionary (e.g., how many
words in the dictionary appear in the document, how many
distinct words of the dictionary appear in the document). During
an interactive model building session, the teacher can add, remove
or edit dictionaries. We have a variety of auto-suggestion tools
that help users complete partially constructed dictionaries using
(e.g.) Wikipedia infoboxes. Each dictionary establishes an
equivalence class over words and enables the learning of models
that can generalize over words which might not even occur in
training examples.

2.3 Interacting with ICE
ICE enables teachers with no expertise in machine learning to

build classifiers and entity extractors. ICE's user interface reflects
this objective and allows a few key actions that do not require ML
or engineering skills. The teachers using ICE can (1) search or
sample items to label, (2) label these items, (3) select and edit
features, (4) monitor accuracy and (5) review errors. Training,
scoring and regularizing are not teacher actions on ICE. Rather,
these computations happen implicitly and transparently. Training

and scoring starts automatically after modifying features or
providing labels. The teachers are always aware of the state of the
system as a status bar indicates which actions are not yet reflected
in the current model.

Figure 3 shows the ICE interface for a classification task.
When teachers start building models in ICE, they select at least
one initial feature and they search for some seed positive and
negative items via a text query. They can then label data resulting
from the search and submit these labels (top right of main window
in Figure 3). From this point, ICE automatically trains a model
and starts making predictions on new data, i.e. producing scores.
The teachers can then sample data that are deemed useful to
improve the model (active learning), or keep searching the
dataset. If a model is available (i.e., after the cold-start period),
ICE pre-labels the examples shown to the teacher with the current
model�¶�V�� �P�R�V�W-likely prediction. As a result, the teacher can label
efficiently by simply correcting those pre-labels that are not
correct. Moreover, the process of explicitly correcting the model
helps the teacher understand the weaknesses of the current model.

Teachers can supply features to ICE via the panel on the left
in Figure 3. The teacher can either browse a corpus of existing
features or create a new feature from scratch (e.g. dictionaries).
Features that represent the information that the model currently
�µ�V�H�Hs�¶ are always visible in the interface.

At any point in time, teachers can evaluate their models: ICE
splits the labeled data into a training and test set so that it can
compute and display performance metrics, including estimates of

the generalization performance (right in Figure 3). To help the
teacher monitor progress, ICE graphically displays the number of
positive and negative examples provided by the teacher (to
encourage a balance of positive and negatives) as well as
precision and recall over time and over various prediction
thresholds. Every time a new model is trained, these performance
metrics are automatically updated in the interface. Teachers also
have access to a review panel that shows their current labels,
along with the models’ predictions. The interface highlights errors
and allows the teacher to sort and filter data, e.g. to view the
model’s predictions on the test data or to view only false
positives/negatives. The review interface also enables teachers to
edit their labels if they made mistakes or if their understanding of
the concept of interest evolves.

Teachers are therefore empowered to label, feature and search.
They can understand the performance of the models they produce.
When they feel confident about their model, it can be exported for
deployment.

3. System Architecture
ICE’s architecture is split into three components: (1) a

teacher-facing client application for driving the ML workflows,
(2) a set of services for computation and data storage, and (3)
offline tools for data import.

Each component is designed to operate on arbitrary data types
that need not be known in advance. In order to support this
generality, the system must be extensible such that new data sets
can be supported without changing the base system.

We enable extensibility by delegating some tasks to system
extensions we refer to as plugins. Plugins extend the system on
both the frontend and the on the backend. On the backend they
provide a set of functions that map the raw data into features or
known data types upon which features can be built (e.g. strings).
On the frontend they provide visualizations that the client can
display to the teacher as well as metadata about the item that can
be used to enhance the visualization. For example, in the case of
text, the bounding boxes of the tokens are surfaced to provide
feature visualization and entity labeling.

3.1 ICE Client
The ICE Client is a Windows desktop application built on

.NET and Windows Presentation Foundation using an MVVM
(Model, View, View Model) architecture. It provides an interface
for various tasks such as labeling, featuring and progress
reporting. Both the user interaction and the session workflow of
building models are defined and run on the client, whereas the

compute or data intensive operations are delegated to backend
services.

3.2 ICE Services
ICE provides four services that can be categorized into two

types: there are two data services and two computation services
(see Figure 4). The data services are realized via a machine
running SQL server with a 20TB RAID 6 disk store. The two
computation services are used interactively by the teacher and
have stringent sub-second delay guarantees; to achieve this
interactivity, the computation services are realized via a cluster of
60 machines, each with 128GB of RAM. ICE’s computation
services do not store any computed data permanently. Instead,
they store the functions used to compute the data along with
references to data stored in the data services. This allows the
services to reliably regenerate any previous computation. The
computation functions are submitted and stored as .NET
assemblies that can be dynamically loaded. This gives teachers the
ability to add functions to the system without the need to
recompile or restart any processes.

In the following subsections, we provide details for each of
the four services.

3.2.1 Raw Data Service
At a basic level, ICE stores raw (byte array) data in a reliable

way (a RAID system or cloud based redundant storage) and
makes it available to the rest of the system via the Raw Data
Service. The service only deals with raw data and is agnostic to
higher level data types. The data is stored and organized in groups
called buckets. Grouping the data items in buckets simplifies
metadata management. In addition, it allows us to group large
chunks of data for more efficient I/O.

3.2.2 Session Data Service
The Session Data Service reliably stores all teacher activity

associated with a model-building session; we include time stamps
with every teacher event so that we can reconstruct the state of the
session corresponding to any past point in time. The data is stored
in a SQL database and is exposed to the client through an OData1
API.

3.2.3 Column Computation Service
The column computation service performs computations that

involve the entire dataset (featuring, scoring and sampling). The

1 http://www.odata.org/

!"#$%$%&'()"*$+)

,)#-'./01

(20")
30/45%

6)2#-#2#

30/45%'
305742#2$0%'

()"*$+)

305742)'80-)

305742)'80-)

305742)'80-)

90#-'+0/45%
5)2#-#2#

!"#$
30/45%':.

(;9'()<<$0%':.
=<)<<$0%<>'

/#1)/<>'
?)#24")<@

()<<$0%':#2#'()"*$+)
=A:#2#@

,#B':#2#'()"*$+) C'
./01<>':#2#1#<)'

5)2#-#2#

%&'(!")*+,-.

Figure 4. ICE Services

service runs on a distributed column store that caches a copy of all
or most of that data. Intuitively, the columns are simply the
(named) values stored for each row.

For the purpose of this section, dataset can be understood
concretely as a collection of items of the same type of data (e.g.,
webpages, images, emails, news articles) for which features are
computed. These features, in turn, are the inputs to the ML
algorithm. Although (as we discuss later) we allow administrators
to append data to an existing dataset, it is convenient to assume
that datasets contain a fixed number of rows. The specific
ordering of rows is assumed to be arbitrary but fixed so that items
can be referred to uniquely by their row number (called rowId).

Featuring can be understood as the teacher providing a
computable function of the items or other previously provided
functions. In ICE, such features are special types of columns
called �ã-columns2 that are maps on other columns. Scoring is also
expressed as a �ã-column of the features and the data that
determines the models (e.g., the feature weights). Sampling (i.e.,
the task of selecting items to label) is expressed as an aggregation
on the dataset. We also support text queries for certain datasets
using a reverse index on the items.

We require that the column store supports random access to
the rows in the dataset for two reasons. First, the training service
(described in the next section) queries the column store for the
feature values corresponding to the labeled items. Second, the ICE
client queries the column store to extract, with low latency
requirements, column values (e.g., features) for specific items that
are being labeled.

As is evident from the above discussion, a general map-reduce
framework (e.g., [7] or [4]) captures many of the requirements for
our system. In what follows, we describe the differences between
our system and existing solutions. This will help illustrate some of
the architectural needs that arise from the specific use of the
column store for large scale interactive ML tasks.

In-memory column store. An important constraint on the
design of ICE is imposed by the requirement of interactivity. This
means that all the actions where the teacher is sensitive to latency
on the part of the system have to be fast. In particular, querying
and getting items to label has to be very fast. Running
aggregations corresponding to a teacher sampling the data has to
be very fast. Also, scoring cannot be too slow or at least must
score a diverse set of items as various iterations of the model are
trained so that the teacher �F�D�Q���L�Q�V�S�H�F�W���W�K�H���R�X�W�S�X�W���R�I�� �W�K�H���³�F�X�U�U�H�Q�W�´��
model on a fresh set of inputs. Traditionally, map-reduce systems,
such as Hadoop or Dryad ([7] , [4]) are geared towards batch
processing of large data and as such make a poor fit for our
interactivity needs. For ICE, we designed the column store to hold
most of the columns in memory (i.e., in RAM) instead. For
webpage datasets, for example, we hold the text content (and
layout geometry information) of all webpages in memory on the
cluster. Furthermore, feature columns and scores are also held in
RAM. There are certain columns, such as the rendered images of
webpages that are too large to hold in RAM for the size of
datasets we consider. The teacher typically inspects only a few of
these in the course of labelling. Thus we load these on-demand
from the disk. More recent in-memory map-reduce systems such
as Spark [23] are more similar to the ICE column store. The
differences with such systems have more to do with trade-offs we
make in ICE so that certain operations that are needed for
interactive learning are even faster at the cost of less generality.

2 The terminology is from lambda calculus.

Data Layout. A column is split into multiple chunks, called
buckets, of contiguous rows; these buckets are distributed across
many machines. The data layout has the additional property that
all the columns corresponding to the same row are present on the
same machine. This design decision imposes the constraint that all
the information needed for a model to score a single item is
present on the same machine. In practice this is not a limitation
because the feature vectors are not too large. Each bucket stores
the starting rowId of the items in the buckets and one can compute
the rowId for any item in the bucket by examining the offset of
the item. Metadata specific to a dataset gives the mapping of
intervals of rowIds to machines.

Aggregations. ICE supports global associative aggregations
and joins on the �N�K�S�+�@ key and more general reduce operations3
are not supported. This is a simplification that arises as a
consequence of ML tasks generally either needing to sample the
data or compute statistics (e.g., TF-IDF) over the dataset. Such
aggregations can also be run on multiple columns simultaneously.
An example is an aggregation where an item is picked uniformly
at random from unlabeled data with a score between 0.70 and 0.75
and a particular feature is also present. In this case we would
aggregate the score column and feature column, ignoring rows
where the feature is absent, and do a reservoir sampling for items
with a score in the desired range. ICE allows for the results of an
aggregation to be wrapped in a column. This means that the
aggregation result is repeated for each row in the column (though
it is not stored this way to conserve space). This is especially
useful when the results of an aggregation are used in a �ã-column.

Reverse index for text searches. Labelling for text
classification tasks benefit from supporting literal text queries.
This allows for efficiently finding examples in the positive class.
In ICE we enable this by allowing a reverse index on certain
string columns. These indices are built at a machine level. For text
queries the results from each of these machines are ranked based
on their Okapi BM25 score (see [15] §11.4.3).

Scoring. In ICE the score column is special and we explain
how it is treated differently first. As the teacher labels new data,
the classifiers or extractors are retrained and the items are re-
scored with the latest model. The new scores are used to select
which item to label next (e.g., items whose probability or being
positive is between 0.7 and 0.8).

One problem that arises when successive models are built in a
session is that scores from one model may not be comparable to
scores from another. Having comparable scores can be important
for sampling correctly, and so we include support for
automatically calibrating the scores. For example, when the score
represents a probability of an item belonging to a class, we use
isotonic regression to keep these scores calibrated.

Another problem that arises is computational. Scoring is often
much slower than labeling or re-training because it can involve
scoring the full data set. This means that the teacher would have
to wait for scoring to complete if only the scores from the latest
scorer were to be used. To circumvent this problem, the score
columns can contain values that have been scored by different
versions of the model. Intuitively, these columns can be thought
of as having their values arranged in a circular list, and the latest
available model is used at all times to overwrite these values.

3 The limitation to global associative reduce operations (i.e.,

associative aggregations) is similar to the original design
decision in Spark [23]; more recent implementations of Spark
allows general reduce operations (and even DAG workflows
[24]).

Aggregators have access to the version number of the model used
to produce the (latest) score of each item, which allows much
flexibility for sampling algorithms during the interactive loop.

Despite these latency-hiding techniques, the speed of scoring
remains important because scores from more recent models give
better feedback to the teacher. Having more machines results in
fresher scores and more efficient labels, but the behavior degrades
gracefully when fewer resources are available. The mechanism
that ICE uses to increase the number of items that have fresh
scores is a distinguishing feature of ICE in relation to general
purpose systems like Spark.

3.2.3.1 Fault tolerance
As in any distributed system, failures are expected. �,�&�(�¶�V��

approach to fault tolerance is specifically designed to support its
data availability requirements. The Column Computation Service
allows access to data in two distinct ways: a) fetching specific row
values for a column and b) aggregate operations over the entire
data set, such as sampling queries, aggregation computations (e.g.
IDFs) or text queries. Having specific row values always available
is important because they may be needed to present an item to the
teacher, or to collect feature values for training. In contrast,
aggregate operations can be robust to a portion of the data
missing. For example, sampling by score or searching can yield
good results even if they are not run over the entire data set.

For this reason, ICE only guarantees availability of all the data
for single row accesses. If a compute node goes offline and a row
value is needed from data hosted by this machine, the request is
redirected to another random compute node. This alternate node
fetches the raw data for this row from the Raw Data Service and
any lambda computations needed to produce the value are
executed on demand. While this is much slower than accessing
pre-computed values cached in memory, the number of rows for
which this needs to happen is generally small, which makes this a
viable solution.

3.2.3.2 Benchmarks
ICE has been tested with a data set that consists of 35 million

web pages deployed across 35 compute nodes. The pages are
saved in a proprietary format that includes a snapshot of the
rendered page along with all the text and DOM structure
information. This data set occupies 4.5 TB of disk space and a
separate version without the page images is also maintained for
faster access and occupies 710 GB. The extracted text and html
geometry measures around 182 GB and this is the portion that is
kept in memory on the compute nodes.

In terms of computation speed, running a linear classifier with
dictionary features (pre-computed) takes approximately 2
seconds. This corresponds to scoring >40 000 documents per
second per core in the cluster and is an area of the system than can
be further optimized.

As mentioned earlier, the most important aspect is querying
speed. The system can scan classifier scores for all 35 million
pages in under 250 ms, which gives good interactive
responsiveness to the teacher.

For comparison purposes, we ran a map/reduce test in both
ICE and Spark4. The task consisted of a map counting the number
of occurrences of a word in 400 000 pages from the Open
Directory Project5, followed by a sum global reduction. This was
done on an 8 core system with 14 GB of RAM (the data for this

4 We chose Spark for this comparison because that is the system

closest to ICE in capabilities.

test is 1.2 GB). The following table summarizes the results and
shows equivalent performance across both systems (times in
milliseconds):

! "#$%&! '() !
*$#!+,-./01 ! 2345! 2655!
789.,8!+:.;1 ! 66! 6!

3.2.4 Training Service
The Training Service is responsible for hosting a catalog of

trainers (e.g., model-building algorithms). These trainers can be
grouped into families, which correspond to groups of instances of
these algorithms configured with different hyper-parameters. An
ICE session uses the training service by selecting a trainer or
family and requesting that it is run on its particular training set. In
the case of a family, the training service can run all member
algorithms in the family and select the best model based on cross-
validation of a given metric (e.g. AUC).

3.3 Data Import Tools
Bringing data into ICE requires an administrator to provide an

importer object (in a dll) that can enumerate the individual rows
of some raw-data source. Importantly, the details/types of this
data do not need to be known by ICE; rather, the corresponding
labeling and featuring plugins are the only components that need
to be able to translate the raw data into types (labels and features)
that are understood by ICE. An important aspect of ICE data sets
is that they are append only. New items can be added, but
previously imported items are kept in immutable form.
Immutability of the raw data is key to being able to guarantee
immutability of the columns that are computed from it.

4. Results
In this section, we present some preliminary results from

people using ICE to build classifiers on standard text
classification tasks.

4.1 Experiments
Recall that our goal with ICE is to enable everyday people to

train ML models from scratch over big data. This requires
balancing traditional ML performance metrics (such as
generalization accuracy) with user-experience metrics (such as
efficiency, understandability, empathy with the learning
algorithm, and simplicity). Therefore, here we present results
pertaining to both. To create our ground truth, we gathered
webpages with labels provided by the Open Directory Project5
(ODP) and crawled the URLs to get the HTML and text. Any
pages that timed out, were redirected, or which contained fewer
than 100 characters were excluded from the set. The resulting
truth set was split randomly into a 70% train set with 330,398
examples and a 30% test set with 140,839 test examples.

5 http://www.dmoz.org/

Our participants for this experiment were members of our
team who selected concepts from the ODP hierarchy based on
their familiarity with the concept. While some members of the
team qualify as ML experts, that knowledge did not give them any
specific advantages. Indeed, the best classifiers were not built by
ML experts. The concepts selected were: Home/Cooking,
Science/Math, and Games/Video Games. The ground-truth
number of positives for each of these categories ranged from 1%
to 8% of the entire corpus and were equally represented in the
train and test sets (8% for Home/Cooking, 6.5% for Science/Math
and 1.7% for Games/Video Games).

We required participants to start from scratch and use ICE to
interactively build a web-page classifier for their selected
concepts via �,�&�(�¶�V interactive ML process described in Section 2.
Teachers were not shown the true ODP labels for this exercise.
Teachers created dictionary features based on what they deemed
important for predicting their categories. For example, one
participant created dictionaries of �³ingredients� ,́ �³utensils� ,́ and
�³measurements� ́for the Home/Cooking classifier.

When participants were done, we analyzed their sessions to
compute the total time taken, the number of labels and features
provided, and the resulting classifier performance. We also
computed these metrics for a classifier trained using the same
labels, but after replacing the teacher-supplied dictionaries with a
standard bag-of-words (BOW) feature set consisting of the top
10,000 n-grams from the Google Web n-grams and weighted by
TF-IDF. We compare �W�K�H�V�H�� �³ICE �O�D�E�H�O�V�´��classifiers to a baseline
�³�2�'�3���O�D�E�H�O�V�´��classifier trained using all of the ODP ground truth

labels. In all cases, the classifiers were trained with logistic
regression using an L2 regularizer.

Figure 5 show the results from this experiment. We see that
within a few hours of work (3-8 hours) and a few hundred labels,
teachers are able to create classifiers using ICE (orange and blue
curves for dictionary and BOW features, respectively) that match
traditionally built classifiers (gray curve) especially in the high
precision region of the precision/recall (P/R) curve. Table 1,
summarizes these results, showing that participants were able to
create classifiers in a few hours with a very small number of
labels (on the order of 100s) and a small number of dictionary
features (30-70 compared to ~300,000 labels and 10,000 features
using the standard BOW model). In addition, reducing the number
of labels and using teacher supplied conceptual dictionaries both
contribute to the simplicity and interpretability of the models.
Whereas ICE classifiers built in a few hours give teachers a quick
way to get several weak classifiers, the result also shows that the
ICE labels with BOW features outperforms ICE classifiers built
with ICE labels and dictionary features. In some of these cases,
the dictionaries built by teachers were either noisy or
incompletely capture the intended concept (e.g., the classifier built
for Video Games missed a number of positive pages talking about
�³�F�O�D�Q�V�´�� �V�L�Q�F�H�� �W�K�H�� �W�H�D�F�K�H�U�� �G�L�G�� �Q�R�W�� �N�Q�R�Z�� �W�K�D�W�� �³�F�O�D�Q�´�� �U�H�I�H�U�U�H�G�� �W�R�� �D��
group of people playing Video Games). In the next section we
discuss some of these issues and briefly describe our ongoing
research on improving the performance of ICE features.

! !"#$%&""'()* + ,-($)-$%./01 + 2/#$3%4(5$"+

Figure 5. Performance of ICE built classifiers compared to classifiers built via traditional means (i.e., a large labeled data set

using bag-of-words features).

!"#$% &
 '() & *+, & '() & *+, & '() & *+, &

-.#$&/0123%4& 6.87 NA 5.42 NA 2.64 NA
52#6&7"8$9%& 767 330,398 588 330,398 406 330,398
52#6&:$";23$%& 68 10,000 66 10,000 32 10,000
<$="99& ";& >?@&
, 3$=.%.1A&

90% 93% 31% 50% 43% 82%

Table 1: Table summarizing the labels and features used
in ICE classifiers vs. a standard BOW model

4.2 Deployment
The ICE tool is being used by several customers from

Microsoft business units with the functionality mentioned above
(interactive labeling, featuring, sampling, and reviewing) to build
classifiers and entity extractors. Several of the customers are non
machine learning experts and the classifiers they have created
with ICE have been deployed in commercial applications. An
example of this is the use of ICE in the live Cortana service. Here
we apply ICE to build classifiers for the social conversation
domain where a domain expert in the Cortana team (non machine
learning expert) developed a high precision binary classifier in
135 minutes to detect the COMPLIMENT intent, for utterances
�V�X�F�K�� �D�V�� �³�&�R�U�W�D�Q�D���� �\�R�X�� �D�U�H�� �J�U�H�D�W�´�� Social conversation is one of
several customers of a system like ICE. Other applications
include web search, email classification and telemetry.

5. Related Work
ICE builds upon recent advances in interactive machine

learning and distributed systems. The following presents work
relevant to ICE.

5.1 Interactive Machine Learning
Different fields have independently introduced systems that

iterate through labeling, model refinement and output updates in
an interactive way. Such systems can target non-technical users.
For example, relevance feedback mechanisms in Information
Retrieval is one of the earliest form of interactive learning
[17][18]: in a retrieval scenario, the user receives a document
ranking from an initial query and marks some of the documents in
that ranking as relevant or non-relevant. The system then takes
this feedback into account to compute a new ranking. Similar
mechanisms have also been proposed for recommender systems
[1][16]. In these cases, the end goal is not to produce a model but
rather to assist quickly the user to find a small set of relevant
items.

The idea of interactive model building grew with the field of
active learning [19]. Active learning studies learning algorithms
and sampling strategies to learn models by actively querying
human labelers. It aims at understanding the impact of biased
sampling on generalization performance and proposing practical
solutions with theoretical convergence guarantees. Theoretical
works percolated to practical applications. Interactive training has
been applied to computer vision tasks such as image segmentation
[8], image classification [10], or gesture classification [9].
Interactive learning has also been applied to text classification
tasks [11]. In particular, different forms of interactive featuring
have been explored over text data [2][6][20].

ICE differs from prior work by its generality as it can be
applied to different data types (e.g. web-pages, raw text or
images) and ML tasks (e.g. classification or segmentation). It also
differs by the dataset size it can manipulate. To our knowledge,
ICE is the only active learning system that enables building
models over 100 million items with interactive speed.

5.2 Distributed Systems for ML
Distributed systems for machine learning commonly refers to

parallel learning algorithms designed to carry the training
optimization over large datasets, e.g. map-reduce for expectation
maximization [5] or parallel asynchronous stochastic gradient
[14]. Our application is different. Training is typically inexpensive
and performed on a single machine because ICE's training sets are
limited to the labels produced by one user over an interactive
session. Our challenge resides in model scoring. The interactive
loop frequently produces new models, and we require the system
to compute quickly model outputs over large datasets for active
sampling. Our computational requirement is therefore similar to
the one driving the design of Spark [23], a cluster computing
system for interactive data analysis as discussed in Section 3.

6. Discussion and Future Work
High performing classifiers and extractors on lopsided

problems are important. The traditional approach to create them is
inefficient and requires hard-to-come-by (and expensive) ML
expertise. To improve on cost, speed, and expertise requirements,
we turned to interactive learning and built an environment that
enables teachers to quickly interact with data at scale with ML in
the loop.

The resulting platform, ICE, is being used for two purposes: to
allows ordinary people to build ML models over big data from
scratch and in a few hours, and to enable researchers to explore
the challenges of interactive learning. The paper presents the
important choices we made to create an interactive ML
architecture, and some results we obtained from non-expert early
adopters.

The architecture of ICE is very similar to the architecture of
Spark. This is remarkable because ICE was designed specifically
for interactive learning and Spark was designed with a more
general ML platform in mind. The two designs share a large
distributed immutable in-memory column store. Spark
implements an in-memory version of Map-Reduce. ICE supports
a limited version of Map-Reduce, without GroupBy, which
permits every column of a given row to reside on the same
machine and reduces the intra-cluster communication. ICE uses
this property to implement a highly optimized instance of Map-
Reduce dedicated to filtering by score (for active labeling and
exploration). The ICE map-reduce is available to engineers
building the datasets, but not to the teachers. A low priority Map
is available to the teacher for computing new features on the large
dataset (computing features on labeled sets remains very fast).
These policies are in place to ensure that all available computation
power is used to minimize �W�K�H�� �U�H�V�S�R�Q�V�H�� �W�L�P�H�� �I�U�R�P�� �W�K�H�� �W�H�D�F�K�H�U�¶�V��
point of view. Despite these differences, it is possible that Spark
or a similar platform could be used by ICE in future iterations.

Classifiers built in a few hours by non-experts using the ICE
perform reasonably well compared to the state of the art. Our
ultimate goal, however, is to enable anyone to build models in a
very short time that perform as well or outperform models built by
ML experts via traditional means.

Once the paradigm of interactive ML is adopted, we can think
of many directions of research to improve the learner, the teacher,
and/or their interaction. For instance, a promising approach that
does all three is to enrich the feature language used by the teacher
to tell the model what to observe. Preliminary results indicate that
we can extend the user-supplied dictionary features (for text
domains) beyond literal string match to create significantly more
powerful and informative features. Consider, for example, a
dictionary feature that contains the abbreviations for the US
�V�W�D�W�H�V���� �Z�K�H�U�H�D�V�� �W�K�H�� �X�V�H�U�� �K�D�G�� �W�K�H�� �F�R�Q�F�H�S�W�� �³�8�6�� �V�W�D�W�H�´�� �L�Q�� �P�L�Q�G���� �D��

literal string match will result in the feature being on for every
�L�Q�V�W�D�Q�F�H�� �R�I�� �³�L�Q�´�� ���,�Q�G�L�D�Q�D���� �D�Q�G�� �³�R�U�´�� ���2�U�H�J�R�Q������ �Z�K�L�F�K�� �L�V�� �O�L�N�H�O�\�� �W�R��
diminish the utility of the feature. As an alternative, we are using
the entries in each dictionary to build automatically (i.e., from
unlabeled data) a common context model that identifies
surrounding string contexts where multiple dictionary entries have
high probability of appearing; by shifting from literal strings to
context models, the dictionary features can match strings not
explicitly given (e.g., common misspellings) and can non-match
�R�Q�� �V�W�U�L�Q�J�V�� �H�[�S�O�L�F�L�W�O�\�� �J�L�Y�H�Q�� ���H���J������ �Z�K�H�Q�� �³�L�Q�´�� �L�V�� �Q�R�W�� �X�V�H�G�� �D�V�� �D�� �V�W�D�W�H��
abbreviation). On the few classification examples we investigated,
t�K�H�V�H�� �³�F�R�Q�F�H�S�W�´�� �G�L�F�W�L�R�Q�D�U�L�H�V��have proven to be far superior to
�³�O�L�W�H�U�D�O�´���G�L�F�W�L�R�Q�D�U�L�H�V���E�H�F�D�X�V�H��they only need few words to define a
common context (efficient), they are not blind when none of the
words in the dictionary appear in the document (better recall), and
they seldom fire in the wrong context (better precision).

Another promising research direction is to provide tools to
�H�Q�K�D�Q�F�H�� �W�K�H�� �W�H�D�F�K�H�U�¶�V�� �D�E�L�O�L�W�\�� �W�R�� �G�R�� �H�[�S�O�R�U�D�W�L�R�Q���� �� �)�R�U�� �L�Q�V�W�D�Q�F�H����
different metrics (in exotic feature space) or external information
sources like a click graph from a search engine (connecting query
nodes to document nodes) can be used to suggest positives for
queries or for web pages.

7. REFERENCES
[1] Adomavicius, G. and Tuzhilin, A. 2005. Towards the Next

Generation of Recommender Systems: A Survey of the State-
of-the-Art and Possible Extensions. IEEE Transactions on
Knowledge and Data Engineering 17, 6, 734-749.

[2] Attenberg, J., Melville, P., and Provost, F. 2010.
A Unified Approach to Active Dual Supervision for Labeling
Features and Examples. 2010. Proceedings of the European
Conference on Machine Learning (ECML-10).

[3] Cesa-Bianchi, N. and Lugosi, G. 2006. Prediction, learning,
and games. Cambridge University Press.

[4] Chaiken, R., Jenkins, B., Larson, P.-A., Ramsey, B., Shakib,
D., Weaver, S. and Zhou, J., SCOPE: Easy and Efficient
Parallel Processing of Massive Data Sets, Proceedings of
VLDB, 1(2), 2008, 1265-1276.

[5] Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu,
Gary Bradski, Andrew Y. Ng, Kunle Olukotun Map-Reduce
for Machine Learning on Multicore. 2006. In Proceedings of
Neural Information Processing Systems (NIPS)

[6] Druck G. and A. McCallum A. 2011. Toward interactive
training and evaluation, Proceedings of the ACM Conference
�R�Q���,�Q�I�R�U�P�D�W�L�R�Q���.�Q�R�Z�O�H�G�J�H���0�D�Q�D�J�P�H�Q�W�����&�,�.�0�¶������.

[7] Dean, J. and Ghemawat, S. 2004. MapReduce: Simplified
Data Processing on Large Clusters. Sixth Symposium on
�2�S�H�U�D�W�L�Q�J���6�\�V�W�H�P���'�H�V�L�J�Q���D�Q�G���,�P�S�O�H�P�H�Q�W�D�W�L�R�Q�����2�6�'�,�¶������,
137-150.

[8] Fails, J.A. and Olsen Jr., D.R. 2003. Interactive Machine
Learning. In Proceedings of the International Conference on
Intelligent User Interfaces. IUI 2003. ACM, 39-45.

[9] Fiebrink, R., Cook, P.R., and Trueman, D. 2011. Human
Model Evaluation in Interactive Supervised Learning. In

Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. CHI 2011. ACM, 147-156.

[10] Fogarty, J., Tan, D., Kapoor, A., and Windor, S. 2008.
CueFlik: Interactive Concept Learning in Image Search. In
Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. CHI 2008. ACM, 29-38.

[11] Godbole, S., Harpale, A., Sarawagi S., and Chakrabarti, S.
�������������'�R�F�X�P�H�Q�W���F�O�D�V�V�L�¿�F�D�W�L�R�Q���W�K�U�R�X�J�K���L�Q�W�H�U�D�F�W�L�Y�H��
supervision of document and term labels. In Proceedings of
�(�&�0�/���3�.�'�'���¶������

[12] Kapoor, A., Lee, B., Tan, D., and Horvitz, E. 2010.
Interactive Optimization for Steering Machine Classification.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. CHI 2010. ACM, 1343-1352.

[13] Lai, T. L. and Robbins, H. 1985. Asymptotically Efficient
Adaptive Allocation Rules. Advances in Applied
Mathematics, 6:4-22.

[14] Langford, J., Smola, A.J. and Zinkevich, 2009. M. Slow
learners are fast. In Proceedings of Neural Information
Processing Systems (NIPS)

[15] Manning, C., Raghavan P., Schutze, H., an Introduction to
Information Retrieval, Cambridge University Press, 2009.

[16] Montaner, M., Lopez, B., de la Rosa, J.L. 2003. A Taxonomy
for Recommender Agents on the Internet. Artificial
Intelligence Review 19, 285-330.

[17] Rocchio, J. 1971. Relevance Feedback Information Retrieval.
In The SMART Retrieval System: Experiments in Automatic
Document Processing, G. Salton, Ed. Prentice-Hall,
Englewood Cliffs, NJ, 313-323.

[18] Salton, G. and Buckley, C. 1990. Improving Retrieval
Performance by Relevance Feedback. Journal of the
American Society of Information Science 41, 288-297.

[19] Settles, B. 2012. Active Learning. Morgan & Claypool
[20] Settles, B. 2011. Closing the Loop: Fast, Interactive Semi-

Supervised Annotation with Queries on Features and
Instances. In Proceedings of Empirical Methods in Natural
Language Processing (EMNLP)

[21] Azari Soufiani, H., Chickering, D., Charles, D., and Parkes,
D. 2014. Approximating the Shapely Value via Multi-Issue
Decompositions. In Proceedings of the 13th International
Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2014).

[22] Talbot, J., Lee, B., Kapoor, A., and Tan, D.S. 2009.
Ensemble Matrix: Interactive Visualization to Support
Machine Learning with Multiple Classifiers. In Proceedings
of the SIGCHI Conference on Human Factors in Computing
Systems. CHI 2009. ACM, 1283-1292.

[23] Zaharia, M., Chowdhury, M., Franklin, M., Shenker, S. and
Stoica, I., Spark: Cluster Computing with Working Sets, 2nd
USENIX Workshop on Hot Topics in Cloud Computing
���+�R�W�&�O�R�X�G�¶��������������������

[24] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J.,
McCauley, M., Franklin, M., Shenker, S., Stoica, I., Resilient
distributed datasets: a fault-tolerant abstraction for in-
memory cluster computing, 9th USENIX Symposium on
Networked Systems Design and Implementation, 2012.

