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ABSTRACT 
Quick interaction between a human teacher and a learning 

machine presents numerous benefits and challenges when 
working with web-scale data. The human teacher guides the 
machine towards accomplishing the task of interest. The learning 
machine leverages big data to find examples that maximize the 
training value of its interaction with the teacher. When the teacher 
is restricted to labeling examples selected by the machine, this 
problem is an instance of active learning. When the teacher can 
provide additional information to the machine (e.g., suggestions 
on what examples or predictive features should be used) as the 
learning task progresses, then the problem becomes one of 
interactive learning. 

To accommodate the two-way communication channel needed 
for efficient interactive learning, the teacher and the machine need 
an environment that supports an interaction language. The 
machine can access, process, and summarize more examples than 
the teacher can see in a lifetime. Based on the machine’s output, 
the teacher can revise the definition of the task or make it more 
precise. Both the teacher and the machine continuously learn and 
benefit from the interaction.  

We have built a platform to (1) produce valuable and 
deployable models and (2) support research on both the machine 
learning and user interface challenges of the interactive learning 
problem. The platform relies on a dedicated, low-latency, 
distributed, in-memory architecture that allows us to construct 
web-scale learning machines with quick interaction speed. The 
purpose of this paper is to describe this architecture and 
demonstrate how it supports our research efforts. Preliminary 
results are presented as illustrations of the architecture but are not 
the primary focus of the paper.  

1. INTRODUCTION 
The detection of rare concepts is helpful in several application 

domains. In web search, for example, we might want to 
distinguish book-review pages from the rest of the web. Other 
applications include online advertising, retail monitoring, medical 
imagery or telemetry. Machine Learning (ML) offers solutions to 
building predictive models in such lopsided problems.  

Current ML solutions to these problems typically involve a 
“loop” of activity that works something like this. First, we collect 
a sample of data to label. For lopsided problems where labeling is 
not free, this sample is typically biased in some way to avoid 
having to label too many examples. To appreciate this, suppose 
that about one in every ten thousand web pages is a book-review 
page, and we sample uniformly from the web to collect data to 
label; if it requires on the order of a thousand examples of book-
review pages to predict them accurately, then we would have to 

label on the order of ten million web pages before we had 
sufficient data. Second, after collecting the data we need to have it 
labeled, usually by human judges. Third, we need to design good 
features that the machine-learning algorithm can use to model the 
labels in the data. Good features for a book-review classifier, for 
example, might be n-gram features that are more prevalent in 
either book-review pages or non-book-review pages. Fourth, we 
train a model on one subset of the labeled data, and evaluate its 
performance on another subset. Depending on how satisfied we 
are with the performance of the model, we can loop back to the 
third step to choose better features (i.e., try to increase 
performance on the existing data), we can loop back to the first 
step to gather more data, possibly using our model to inform how 
to bias the sample, or we can decide to deploy the model in our 
application. After deployment, we might also decide to visit the 
loop again if we observe unexpected costly errors. 

There are two significant problems with this methodology 
which limit its effectiveness. The first is that in order to be 
successful, a machine-learning expert is likely required in more 
than one of the steps: getting a biased sample to label that will 
result in a model that generalizes to unbiased data is a difficult 
ML problem, and designing features that work well might require 
expert understanding of the ML training algorithm. Because 
machine-learning experts can be hard to come by and expensive, 
this limits the modeling problems that are deemed worth solving. 

The second problem is that iterating through the steps of the 
loop can take a very long time, due both to the work involved and 
the coordination required of the (likely many) people involved. In 
addition, because each iteration of the loop is costly, there is a 
tendency to try to minimize the number of times we iterate, which 
results in maximizing the number of labels we collect at each step. 
But labeling large batches of data at each iteration results in a loss 
of agility in the process. Suppose, for example, that after the first 
iteration through the loop, the book-review model is predicting 
that many magazine-review pages are being erroneously labeled 
as book reviews. The system designer might decide that 
magazine-review pages are, in fact, appropriate positives for the 
problem at hand and want to change the definition of the rare 
concept. But such a change in definition might invalidate much of 
the labeled data. 

To overcome these obstacles, we turn to interactive ML, 
which interleaves human input, training, scoring, and machine 
feedback in a real time loop.  In this setting a single teacher 
performs all of the functions of the domain expert, the labeler, and 
the ML expert.  At every step, the teacher learns from the machine 
and the machine benefits from the human guidance.  The feedback 
allows the teacher to gain necessary (empirical) expertise to best 



guide the training process without (theoretical) ML expertise. 
With the proper architecture, instantaneous machine training and 
evaluation over large datasets can shorten the typical loop above 
to seconds per iteration. In addition, access to large datasets 
enables the teacher to explore the data efficiently to surface rare 
examples. 

Figure 1 helps us visualize the “world view” of the teacher 
and the machine during interactive ML. Consider again the book-
review classification example. Initially, from the teacher’s point 
of view, book reviews are contained in the small blue circle and 
all other pages are contained in the small grey circle. We imagine 
a “ground truth”, represented by the two orange circles, of which 
the teacher is not yet aware because of either ignorance or lack of 
clarity in the definition of a book review. From the perspective of 
an early stage classifier the book reviews look like the green oval. 
Through the process of interactive ML, the goal is to get the blue 
and green shapes to mold toward each other and converge on 
ground truth.  

We built a large scale interactive ML system called ICE 
(Interactive Classification and Extraction) designed to leverage 
the capabilities of both humans and machines. Specifically, ICE 
enables ordinary people to train interactively both classifiers 
(functions that map an input item to one or more discrete classes) 
and extractors (functions that map an input item to a sequence of 
annotated segments) using large datasets containing 100 million 
examples or more. It allows teachers to build models on lopsided 
problems in a few hours without the need to pre-filter the data.  

Building a large scale interactive ML system is not without its 
own research and engineering challenges. Interactivity requires us 
to train models and compute their output over large datasets in 
seconds. It also requires visualizations for the human to assess the 
model performance, understand errors, and make the right 
decisions in terms of the needed features or areas to explore. It 
further requires an interface for non-experts to label and provide 
features. Interactive learning also raises new questions for ML: Is 
it possible to derive learning algorithms whose diagnosis is easier 
for non-experts? Can we evaluate and even provide guarantees for 
an active learning scenario in which the human teacher 
dynamically refines the problem formulation? 

The purpose of this paper is to describe the key features of our 
system and the corresponding architectural decisions we made to 
support these features. Our decisions were driven by the need to 
balance both (1) traditional ML objectives such as generalization 
accuracy, and (2) user-experience objectives such as efficiency, 
understandability, simplicity, and empathy with the learning 
algorithm. 

The rest of this paper is organized as follows. First, we 
describe how ICE enables ordinary people to build models from 
scratch in a few hours. This includes describing ICE’s interactive 
labeling and featuring loops, as well as introducing user 
interaction with the ICE interface. Then, we describe the 
distributed architecture required to enable interactive labeling and 
featuring at the speed and scale necessary for maintaining user 
engagement and effectiveness. Next, we present preliminary 
results on using ICE to build classifiers over web page data. 
Finally, we discuss open questions and related work. 

2. ICE 
In this section, we describe interactive labeling, interactive 

featuring and the user interface of ICE. We designed our system 
to allow a single teacher to train models interactively, and our 
description emphasizes this bias. As we describe below, however, 
we designed the system to encourage teachers to import others’ 
models and features into their own sessions to be used as features. 
This functionality means that the value from a community of 
teachers on ICE can be much more than the sum of the value from 
each individual. We also envision ICE supporting cooperative 
teaching scenarios, where multiple teachers contribute to the same 
learning task [21].  

2.1 Interactive Labeling 
As discussed in Section 1, lopsided problems require us to 

train models on a biased sample. When a teacher first starts 
working with ICE (that is, when there is no model available to 
help choose these examples), the teacher needs to have a 
mechanism to reveal a-priori knowledge about the rare event in 
order to extract examples. In ICE, we enable the teacher to search 
the dataset for examples to label. Sampling by this approach 
alone, however, can lead to an undesirable biases due to the 
teacher not understanding or explicitly exploring the rare class to 
its full extent. For instance, the teacher might not know about or 
remember to retrieve all types of ethnic recipes. Consequently, a 
recipe classifier built only from examples found by a teacher’s 
search might perform poorly in a real-world deployment.  To deal 
with the teacher’s ignorance about the distribution, we enable 
active learning to allow the system to select automatically 
examples that are deemed valuable to label. In this framework, 
teachers can be ignorant of the distribution as long as they can 
correctly label items on demand.  

After the initial ‘cold start’ period when no model is available 
to help choose examples, ICE’s interactive labeling loop 
alternates between the teacher labeling items and the system 
selecting items to label next. At any point in time, the teacher can 

 
Figure 1. The world according to the teacher and the 

model. 
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Figure 2. Typical distribution of a model score. 
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take the initiative to search for items to label with a query. A new 
model is trained whenever sufficient additional labels have been 
submitted by the teacher. New models are immediately applied to 
the unlabeled data, producing a fresh score for each item. The 
system samples the next items to label according to the latest 
scores available. This active-learning strategy is efficient for 
labeling because it focuses the �W�H�D�F�K�H�U�¶�V��attention on items that are 
more likely to be mistakes and whose labels can yield better 
subsequent models, resulting in faster learning overall (see 
Section 4 on active learning). To appreciate this, consider Figure 
2, which shows the number of items in the dataset as a function of 
the probability of a rare class according to a typical probabilistic 
classifier. Active-�O�H�D�U�Q�L�Q�J���V�D�P�S�O�L�Q�J���V�W�U�D�W�H�J�L�H�V���Z�L�O�O���V�D�P�S�O�H���³�W�R���W�K�H��
�U�L�J�K�W�´�� �W�R�� �D�Y�R�L�G�� �W�K�H�� �Y�D�V�W�� �P�D�M�R�U�L�W�\�� �R�I�� �L�W�H�P�V�� �W�K�D�W�� �K�D�Y�H�� �D�O�P�R�V�W�� �Q�R��
chance (according to the current model) of being a positive.  

From the system�¶�V perspective, interactive labeling is a time-
sensitive and demanding process. As the teacher provides labels, 
the system produces a model, which involves training and 
validating hyper-parameters (e.g. regularization parameters) in a 
few seconds. Automatic validation is important because non-
expert teachers are not expected to provide hyper-parameters, and 
it is computationally intensive because it trains a family of models 
from which to select. Once the selected model is available, the 
scoring computation starts. Our infrastructure computes the score 
of each item, relying on parallel processes on multiple machines 
(see Section 3). Depending on the size of the dataset, scoring all 
items might not be performed in a few seconds. Even in this case, 
the teacher should not wait, the scores should not be outdated, and 
all of the data should be available to sample. We therefore keep 
the most recent computed score in memory for all items. We also 
score each item to be shown to the teacher with the latest scorer if 
needed. To maximize score freshness, scoring with a new model 
starts by interrupting the previous scorer and scoring begins where 
the previous scorer was stopped. Note that the quality of the 
selected items to be labeled next may degrade if too few items 
have been re-scored since the last scorer was produced. Efficient 
scoring in ICE is discussed further in Section 3.   

Given a set of features (see Section 2.2), interactive labeling 
implements a fine-grained version of the traditional collect-label-
feature-train-evaluate loop by updating the model within seconds 
after a teacher action. This means that the teacher is always 
confronted with the samples based on the most recent model. The 
teacher also has access to performance estimates for this model, 
which avoids the need to fix problems that have already been 
solved by new labels or features. Additionally, interactive labeling 
allows the teacher to revisit the concept definition over time 
without incurring such a high cost as in the traditional loop. The 
teacher can edit the previous labels or submit a new query to 
reflect this change at any point in time, which is much more 
flexible than (e.g.) writing new labeling guidelines to be sent 
along with data to a third party labeler. This highlights the benefit 
of interactive labeling for exploration. Our strategy not only 
enables the teachers to provide semantic information but also 
provides them with the seamless assistance of a large-scale system 
to evolve their mental models of the task.   

2.2 Interactive Featuring 
The performance of ML algorithms depends on the 

representations of the data, or features. The choice of features can 
greatly impact the number of training labels required to achieve a 
given test accuracy. The choice also affects the overall running 
time of training/testing and impacts the ability for human 
operators to understand model scores and diagnose accuracy 
issues. In particular, the set of features should achieve a delicate 
balance between (1) being representative enough so that the 
model can discriminate between items for the task at hand and (2) 
being simple enough to prevent the learning algorithm from being 
influenced by irrelevant distinctions between items when few 
training labels are available. Consequently, ML experts take great 
care when defining a feature set. The appropriate set is often task-
specific, and its definition requires alternating between training a 
model, looking at its errors, and implementing or refining feature 
functions. This task requires both intuition about the semantics of 
the problem and understanding of the model errors. 

ICE enables non-expert teachers to define the appropriate 
feature set through interactive featuring. Interactive featuring 
includes the creation, editing, and refinement of features. It 
integrates with interactive labeling in the same user interface (see 
Section 2.3). At any point in time, the teacher can decide to label 
or feature by inspecting the model performance and exploring its 
errors. Interactive featuring encourages the teacher to interactively 
compose a small set of useful features, keeping the complexity of 
the model to a minimum. This strategy avoids complex models 
with large number of features which are likely to work well in an 
initial phase, but may quickly leave the teacher with an intricate 
model that no obvious decision can improve. After providing each 
feature or label, the teacher can explore the model errors, interpret 
them and decide how to fix them through search, active learning 
or featuring. This decision of how to fix errors can be driven by 
contrasting training and test errors: training errors often can 
surface missing features, showing that the model is blind to some 
types of item characteristics, whereas testing errors can often 
suggest that more labels are needed for a particular area of 
examples.  

ICE allows teachers to add three types of features: (1) built-in 
features, (2) features that are themselves learned models built by 
ICE teachers, and (3) teacher-defined features. Some of these 
features support per-item visualization to help the teacher 
understand their effect. Built-in features correspond to typical 
features used in the literature for classification and extraction, e.g. 
bag-of-words, regular expressions for text tasks, and edge 
detectors for images. Features that are learned models offer the 
opportunity for teachers to decompose their tasks into sub-
problems. These features also offer the ability for a teacher to re-
use relevant models already built by someone else. For instance, a 
teacher working on image classification to detect mountains can 
re-use or build a separate model to discriminate between indoor 
and outdoor pictures. Teacher-defined features includes generic 
functions that teachers can import by providing a dynamically 
linked library or features that can be edited from the ICE interface 
itself. 



 
Figure 3. The main ICE interface (left) along with a supplementary window displaying performance metrics (right). On the 

right of the main ICE interface, the user can inspect and label data (e.g., four pages are displayed in this figure, three labeled 
positive and one negative). The left panel contains features already supplied by the user for this classifier via active featuring. 

The supplementary window on the right display standard performance metrics (e.g., precision and recall) to help the user 
monitor their classifier’s progress. 

 
 
 

In the following, we illustrate the benefit of ICE-editable 
features by describing dictionaries, a type of feature that the 
teacher can edit interactively for text tasks. A dictionary defines a 
semantic concept through a list of related words. For instance, a 
set of months ���H���J������ �³�-�D�Q�X�D�U�\�´���� �³�)�H�E�U�X�D�U�\� ,́�«���� �³�'�H�F�H�P�E�H�U�´) 
�F�D�S�W�X�U�H�V���W�K�H���³�0�R�Q�W�K�V�´���F�R�Q�F�H�S�W�����7�K�H���Z�R�U�G�V���L�Q���D���G�L�F�W�L�R�Q�D�U�\���W�R�J�H�W�K�H�U��
form a simple model for a token-level feature that optionally can 
be aggregated at a document level by computing statistics 
between a document and the given dictionary (e.g., how many 
words in the dictionary appear in the document, how many 
distinct words of the dictionary appear in the document). During 
an interactive model building session, the teacher can add, remove 
or edit dictionaries. We have a variety of auto-suggestion tools 
that help users complete partially constructed dictionaries using 
(e.g.) Wikipedia infoboxes. Each dictionary establishes an 
equivalence class over words and enables the learning of models 
that can generalize over words which might not even occur in 
training examples.  

2.3 Interacting with ICE 
ICE enables teachers with no expertise in machine learning to 

build classifiers and entity extractors. ICE's user interface reflects 
this objective and allows a few key actions that do not require ML 
or engineering skills. The teachers using ICE can (1) search or 
sample items to label, (2) label these items, (3) select and edit 
features, (4) monitor accuracy and (5) review errors. Training, 
scoring and regularizing are not teacher actions on ICE. Rather, 
these computations happen implicitly and transparently. Training 

and scoring starts automatically after modifying features or 
providing labels. The teachers are always aware of the state of the 
system as a status bar indicates which actions are not yet reflected 
in the current model. 

Figure 3 shows the ICE interface for a classification task. 
When teachers start building models in ICE, they select at least 
one initial feature and they search for some seed positive and 
negative items via a text query. They can then label data resulting 
from the search and submit these labels (top right of main window 
in Figure 3). From this point, ICE automatically trains a model 
and starts making predictions on new data, i.e. producing scores. 
The teachers can then sample data that are deemed useful to 
improve the model (active learning), or keep searching the 
dataset. If a model is available (i.e., after the cold-start period), 
ICE pre-labels the examples shown to the teacher with the current 
model�¶�V�� �P�R�V�W-likely prediction. As a result, the teacher can label 
efficiently by simply correcting those pre-labels that are not 
correct. Moreover, the process of explicitly correcting the model 
helps the teacher understand the weaknesses of the current model. 

Teachers can supply features to ICE via the panel on the left 
in Figure 3. The teacher can either browse a corpus of existing 
features or create a new feature from scratch (e.g. dictionaries). 
Features that represent the information that the model currently 
�µ�V�H�Hs�¶ are always visible in the interface. 

At any point in time, teachers can evaluate their models: ICE 
splits the labeled data into a training and test set so that it can 
compute and display performance metrics, including estimates of 



the generalization performance (right in Figure 3). To help the 
teacher monitor progress, ICE graphically displays the number of 
positive and negative examples provided by the teacher (to 
encourage a balance of positive and negatives) as well as 
precision and recall over time and over various prediction 
thresholds. Every time a new model is trained, these performance 
metrics are automatically updated in the interface. Teachers also 
have access to a review panel that shows their current labels, 
along with the models’ predictions. The interface highlights errors 
and allows the teacher to sort and filter data, e.g. to view the 
model’s predictions on the test data or to view only false 
positives/negatives. The review interface also enables teachers to 
edit their labels if they made mistakes or if their understanding of 
the concept of interest evolves.  

Teachers are therefore empowered to label, feature and search. 
They can understand the performance of the models they produce. 
When they feel confident about their model, it can be exported for 
deployment.  

3. System Architecture 
ICE’s architecture is split into three components: (1) a 

teacher-facing client application for driving the ML workflows, 
(2) a set of services for computation and data storage, and (3) 
offline tools for data import. 

Each component is designed to operate on arbitrary data types 
that need not be known in advance. In order to support this 
generality, the system must be extensible such that new data sets 
can be supported without changing the base system. 

We enable extensibility by delegating some tasks to system 
extensions we refer to as plugins. Plugins extend the system on 
both the frontend and the on the backend. On the backend they 
provide a set of functions that map the raw data into features or 
known data types upon which features can be built (e.g. strings). 
On the frontend they provide visualizations that the client can 
display to the teacher as well as metadata about the item that can 
be used to enhance the visualization. For example, in the case of 
text, the bounding boxes of the tokens are surfaced to provide 
feature visualization and entity labeling. 

3.1 ICE Client 
The ICE Client is a Windows desktop application built on 

.NET and Windows Presentation Foundation using an MVVM 
(Model, View, View Model) architecture. It provides an interface 
for various tasks such as labeling, featuring and progress 
reporting. Both the user interaction and the session workflow of 
building models are defined and run on the client, whereas the 

compute or data intensive operations are delegated to backend 
services. 

3.2 ICE Services 
ICE provides four services that can be categorized into two 

types: there are two data services and two computation services 
(see Figure 4). The data services are realized via a machine 
running SQL server with a 20TB RAID 6 disk store. The two 
computation services are used interactively by the teacher and 
have stringent sub-second delay guarantees; to achieve this 
interactivity, the computation services are realized via a cluster of 
60 machines, each with 128GB of RAM. ICE’s computation 
services do not store any computed data permanently. Instead, 
they store the functions used to compute the data along with 
references to data stored in the data services. This allows the 
services to reliably regenerate any previous computation. The 
computation functions are submitted and stored as .NET 
assemblies that can be dynamically loaded. This gives teachers the 
ability to add functions to the system without the need to 
recompile or restart any processes.  

In the following subsections, we provide details for each of 
the four services. 

3.2.1 Raw Data Service 
At a basic level, ICE stores raw (byte array) data in a reliable 

way (a RAID system or cloud based redundant storage) and 
makes it available to the rest of the system via the Raw Data 
Service. The service only deals with raw data and is agnostic to 
higher level data types. The data is stored and organized in groups 
called buckets. Grouping the data items in buckets simplifies 
metadata management. In addition, it allows us to group large 
chunks of data for more efficient I/O. 

3.2.2 Session Data Service 
The Session Data Service reliably stores all teacher activity 

associated with a model-building session; we include time stamps 
with every teacher event so that we can reconstruct the state of the 
session corresponding to any past point in time. The data is stored 
in a SQL database and is exposed to the client through an OData1 
API. 

3.2.3 Column Computation Service 
The column computation service performs computations that 

involve the entire dataset (featuring, scoring and sampling). The 

                                                                 
1 http://www.odata.org/ 
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Figure 4. ICE Services 

 



service runs on a distributed column store that caches a copy of all 
or most of that data. Intuitively, the columns are simply the 
(named) values stored for each row.  

For the purpose of this section, dataset can be understood 
concretely as a collection of items of the same type of data (e.g., 
webpages, images, emails, news articles) for which features are 
computed. These features, in turn, are the inputs to the ML 
algorithm. Although (as we discuss later) we allow administrators 
to append data to an existing dataset, it is convenient to assume 
that datasets contain a fixed number of rows. The specific 
ordering of rows is assumed to be arbitrary but fixed so that items 
can be referred to uniquely by their row number (called rowId).  

Featuring can be understood as the teacher providing a 
computable function of the items or other previously provided 
functions. In ICE, such features are special types of columns 
called �ã-columns2 that are maps on other columns. Scoring is also 
expressed as a �ã-column of the features and the data that 
determines the models (e.g., the feature weights). Sampling (i.e., 
the task of selecting items to label) is expressed as an aggregation 
on the dataset. We also support text queries for certain datasets 
using a reverse index on the items.  

We require that the column store supports random access to 
the rows in the dataset for two reasons. First, the training service 
(described in the next section) queries the column store for the 
feature values corresponding to the labeled items. Second, the ICE 
client queries the column store to extract, with low latency 
requirements, column values (e.g., features) for specific items that 
are being labeled. 

As is evident from the above discussion, a general map-reduce 
framework (e.g., [7] or [4]) captures many of the requirements for 
our system. In what follows, we describe the differences between 
our system and existing solutions. This will help illustrate some of 
the architectural needs that arise from the specific use of the 
column store for large scale interactive ML tasks. 

In-memory column store. An important constraint on the 
design of ICE is imposed by the requirement of interactivity. This 
means that all the actions where the teacher is sensitive to latency 
on the part of the system have to be fast. In particular, querying 
and getting items to label has to be very fast. Running 
aggregations corresponding to a teacher sampling the data has to 
be very fast. Also, scoring cannot be too slow or at least must 
score a diverse set of items as various iterations of the model are 
trained so that the teacher �F�D�Q���L�Q�V�S�H�F�W���W�K�H���R�X�W�S�X�W���R�I�� �W�K�H���³�F�X�U�U�H�Q�W�´��
model on a fresh set of inputs. Traditionally, map-reduce systems, 
such as Hadoop or Dryad ([7] , [4]) are geared towards batch 
processing of large data and as such make a poor fit for our 
interactivity needs. For ICE, we designed the column store to hold 
most of the columns in memory (i.e., in RAM) instead. For 
webpage datasets, for example, we hold the text content (and 
layout geometry information) of all webpages in memory on the 
cluster. Furthermore, feature columns and scores are also held in 
RAM. There are certain columns, such as the rendered images of 
webpages that are too large to hold in RAM for the size of 
datasets we consider. The teacher typically inspects only a few of 
these in the course of labelling. Thus we load these on-demand 
from the disk. More recent in-memory map-reduce systems such 
as Spark [23] are more similar to the ICE column store. The 
differences with such systems have more to do with trade-offs we 
make in ICE so that certain operations that are needed for 
interactive learning are even faster at the cost of less generality. 

                                                                 
2 The terminology is from lambda calculus. 

Data Layout. A column is split into multiple chunks, called 
buckets, of contiguous rows; these buckets are distributed across 
many machines. The data layout has the additional property that 
all the columns corresponding to the same row are present on the 
same machine. This design decision imposes the constraint that all 
the information needed for a model to score a single item is 
present on the same machine. In practice this is not a limitation 
because the feature vectors are not too large. Each bucket stores 
the starting rowId of the items in the buckets and one can compute 
the rowId for any item in the bucket by examining the offset of 
the item. Metadata specific to a dataset gives the mapping of 
intervals of rowIds to machines.  

Aggregations. ICE supports global associative aggregations 
and joins on the �N�K�S�+�@ key and more general reduce operations3 
are not supported. This is a simplification that arises as a 
consequence of ML tasks generally either needing to sample the 
data or compute statistics (e.g., TF-IDF) over the dataset. Such 
aggregations can also be run on multiple columns simultaneously. 
An example is an aggregation where an item is picked uniformly 
at random from unlabeled data with a score between 0.70 and 0.75 
and a particular feature is also present. In this case we would 
aggregate the score column and feature column, ignoring rows 
where the feature is absent, and do a reservoir sampling for items 
with a score in the desired range. ICE allows for the results of an 
aggregation to be wrapped in a column. This means that the 
aggregation result is repeated for each row in the column (though 
it is not stored this way to conserve space). This is especially 
useful when the results of an aggregation are used in a �ã-column.  

Reverse index for text searches. Labelling for text 
classification tasks benefit from supporting literal text queries. 
This allows for efficiently finding examples in the positive class. 
In ICE we enable this by allowing a reverse index on certain 
string columns. These indices are built at a machine level. For text 
queries the results from each of these machines are ranked based 
on their Okapi BM25 score (see [15] §11.4.3). 

Scoring. In ICE the score column is special and we explain 
how it is treated differently first. As the teacher labels new data, 
the classifiers or extractors are retrained and the items are re-
scored with the latest model. The new scores are used to select 
which item to label next (e.g., items whose probability or being 
positive is between 0.7 and 0.8).   

One problem that arises when successive models are built in a 
session is that scores from one model may not be comparable to 
scores from another. Having comparable scores can be important 
for sampling correctly, and so we include support for 
automatically calibrating the scores. For example, when the score 
represents a probability of an item belonging to a class, we use 
isotonic regression to keep these scores calibrated. 

Another problem that arises is computational. Scoring is often 
much slower than labeling or re-training because it can involve 
scoring the full data set. This means that the teacher would have 
to wait for scoring to complete if only the scores from the latest 
scorer were to be used.  To circumvent this problem, the score 
columns can contain values that have been scored by different 
versions of the model. Intuitively, these columns can be thought 
of as having their values arranged in a circular list, and the latest 
available model is used at all times to overwrite these values. 

                                                                 
3 The limitation to global associative reduce operations (i.e., 

associative aggregations) is similar to the original design 
decision in Spark [23]; more recent implementations of Spark 
allows general reduce operations (and even DAG workflows 
[24]). 



Aggregators have access to the version number of the model used 
to produce the (latest) score of each item, which allows much 
flexibility for sampling algorithms during the interactive loop. 

Despite these latency-hiding techniques, the speed of scoring 
remains important because scores from more recent models give 
better feedback to the teacher. Having more machines results in 
fresher scores and more efficient labels, but the behavior degrades 
gracefully when fewer resources are available. The mechanism 
that ICE uses to increase the number of items that have fresh 
scores is a distinguishing feature of ICE in relation to general 
purpose systems like Spark. 

 

3.2.3.1 Fault tolerance 
As in any distributed system, failures are expected. �,�&�(�¶�V��

approach to fault tolerance is specifically designed to support its 
data availability requirements. The Column Computation Service 
allows access to data in two distinct ways: a) fetching specific row 
values for a column and b) aggregate operations over the entire 
data set, such as sampling queries, aggregation computations (e.g. 
IDFs) or text queries. Having specific row values always available 
is important because they may be needed to present an item to the 
teacher, or to collect feature values for training. In contrast, 
aggregate operations can be robust to a portion of the data 
missing. For example, sampling by score or searching can yield 
good results even if they are not run over the entire data set.  

For this reason, ICE only guarantees availability of all the data 
for single row accesses. If a compute node goes offline and a row 
value is needed from data hosted by this machine, the request is 
redirected to another random compute node. This alternate node 
fetches the raw data for this row from the Raw Data Service and 
any lambda computations needed to produce the value are 
executed on demand.  While this is much slower than accessing 
pre-computed values cached in memory, the number of rows for 
which this needs to happen is generally small, which makes this a 
viable solution. 

3.2.3.2 Benchmarks 
ICE has been tested with a data set that consists of 35 million 

web pages deployed across 35 compute nodes. The pages are 
saved in a proprietary format that includes a snapshot of the 
rendered page along with all the text and DOM structure 
information. This data set occupies 4.5 TB of disk space and a 
separate version without the page images is also maintained for 
faster access and occupies 710 GB. The extracted text and html 
geometry measures around 182 GB and this is the portion that is 
kept in memory on the compute nodes.  

In terms of computation speed, running a linear classifier with 
dictionary features (pre-computed) takes approximately 2 
seconds. This corresponds to scoring >40 000 documents per 
second per core in the cluster and is an area of the system than can 
be further optimized. 

As mentioned earlier, the most important aspect is querying 
speed. The system can scan classifier scores for all 35 million 
pages in under 250 ms, which gives good interactive 
responsiveness to the teacher. 

For comparison purposes, we ran a map/reduce test in both 
ICE and Spark4. The task consisted of a map counting the number 
of occurrences of a word in 400 000 pages from the Open 
Directory Project5, followed by a sum global reduction. This was 
done on an 8 core system with 14 GB of RAM (the data for this 

                                                                 
4 We chose Spark for this comparison because that is the system 

closest to ICE in capabilities. 

test is 1.2 GB). The following table summarizes the results and 
shows equivalent performance across both systems (times in 
milliseconds): 
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3.2.4 Training Service 
The Training Service is responsible for hosting a catalog of 

trainers (e.g., model-building algorithms). These trainers can be 
grouped into families, which correspond to groups of instances of 
these algorithms configured with different hyper-parameters. An 
ICE session uses the training service by selecting a trainer or 
family and requesting that it is run on its particular training set. In 
the case of a family, the training service can run all member 
algorithms in the family and select the best model based on cross-
validation of a given metric (e.g. AUC). 

3.3 Data Import Tools 
Bringing data into ICE requires an administrator to provide an 

importer object (in a dll) that can enumerate the individual rows 
of some raw-data source. Importantly, the details/types of this 
data do not need to be known by ICE; rather, the corresponding 
labeling and featuring plugins are the only components that need 
to be able to translate the raw data into types (labels and features) 
that are understood by ICE. An important aspect of ICE data sets 
is that they are append only. New items can be added, but 
previously imported items are kept in immutable form. 
Immutability of the raw data is key to being able to guarantee 
immutability of the columns that are computed from it. 

4. Results 
In this section, we present some preliminary results from 

people using ICE to build classifiers on standard text 
classification tasks. 

 

4.1 Experiments 
Recall that our goal with ICE is to enable everyday people to 

train ML models from scratch over big data. This requires 
balancing traditional ML performance metrics (such as 
generalization accuracy) with user-experience metrics (such as 
efficiency, understandability, empathy with the learning 
algorithm, and simplicity). Therefore, here we present results 
pertaining to both. To create our ground truth, we gathered 
webpages with labels provided by the Open Directory Project5 
(ODP) and crawled the URLs to get the HTML and text. Any 
pages that timed out, were redirected, or which contained fewer 
than 100 characters were excluded from the set. The resulting 
truth set was split randomly into a 70% train set with 330,398 
examples and a 30% test set with 140,839 test examples.    

                                                                 
5 http://www.dmoz.org/ 



Our participants for this experiment were members of our 
team who selected concepts from the ODP hierarchy based on 
their familiarity with the concept. While some members of the 
team qualify as ML experts, that knowledge did not give them any 
specific advantages.  Indeed, the best classifiers were not built by 
ML experts. The concepts selected were: Home/Cooking, 
Science/Math, and Games/Video Games. The ground-truth 
number of positives for each of these categories ranged from 1% 
to 8% of the entire corpus and were equally represented in the 
train and test sets (8% for Home/Cooking, 6.5% for Science/Math 
and 1.7% for Games/Video Games). 

We required participants to start from scratch and use ICE to 
interactively build a web-page classifier for their selected 
concepts via �,�&�(�¶�V interactive ML process described in Section 2. 
Teachers were not shown the true ODP labels for this exercise. 
Teachers created dictionary features based on what they deemed 
important for predicting their categories. For example, one 
participant created dictionaries of �³ingredients� ,́ �³utensils� ,́ and 
�³measurements�  ́for the Home/Cooking classifier.  

When participants were done, we analyzed their sessions to 
compute the total time taken, the number of labels and features 
provided, and the resulting classifier performance. We also 
computed these metrics for a classifier trained using the same 
labels, but after replacing the teacher-supplied dictionaries with a 
standard bag-of-words (BOW) feature set consisting of the top 
10,000 n-grams from the Google Web n-grams and weighted by 
TF-IDF. We compare �W�K�H�V�H�� �³ICE �O�D�E�H�O�V�´��classifiers to a baseline 
�³�2�'�3���O�D�E�H�O�V�´��classifier trained using all of the ODP ground truth 

labels. In all cases, the classifiers were trained with logistic 
regression using an L2 regularizer.  

Figure 5 show the results from this experiment. We see that 
within a few hours of work (3-8 hours) and a few hundred labels, 
teachers are able to create classifiers using ICE (orange and blue 
curves for dictionary and BOW features, respectively) that match 
traditionally built classifiers (gray curve) especially in the high 
precision region of the precision/recall (P/R) curve. Table 1, 
summarizes these results, showing that participants were able to 
create classifiers in a few hours with a very small number of 
labels (on the order of 100s) and a small number of dictionary 
features (30-70 compared to ~300,000 labels and 10,000 features 
using the standard BOW model). In addition, reducing the number 
of labels and using teacher supplied conceptual dictionaries both 
contribute to the simplicity and interpretability of the models. 
Whereas ICE classifiers built in a few hours give teachers a quick 
way to get several weak classifiers, the result also shows that the 
ICE labels with BOW features outperforms ICE classifiers built 
with ICE labels and dictionary features. In some of these cases, 
the dictionaries built by teachers were either noisy or 
incompletely capture the intended concept (e.g., the classifier built 
for Video Games missed a number of positive pages talking about 
�³�F�O�D�Q�V�´�� �V�L�Q�F�H�� �W�K�H�� �W�H�D�F�K�H�U�� �G�L�G�� �Q�R�W�� �N�Q�R�Z�� �W�K�D�W�� �³�F�O�D�Q�´�� �U�H�I�H�U�U�H�G�� �W�R�� �D��
group of people playing Video Games). In the next section we 
discuss some of these issues and briefly describe our ongoing 
research on improving the performance of ICE features. 
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Figure 5. Performance of ICE built classifiers compared to classifiers built via traditional means (i.e., a large labeled data set 

using bag-of-words features). 
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90% 93% 31% 50% 43% 82% 

Table 1: Table summarizing the labels and features used 
in ICE classifiers vs. a standard BOW model 

 

4.2 Deployment 
The ICE tool is being used by several customers from 

Microsoft business units with the functionality mentioned above 
(interactive labeling, featuring, sampling, and reviewing) to build 
classifiers and entity extractors.  Several of the customers are non 
machine learning experts and the classifiers they have created 
with ICE have been deployed in commercial applications. An 
example of this is the use of ICE in the live Cortana service.  Here 
we apply ICE to build classifiers for the social conversation 
domain where a domain expert in the Cortana team (non machine 
learning expert) developed a high precision binary classifier in 
135 minutes to detect the COMPLIMENT intent, for utterances 
�V�X�F�K�� �D�V�� �³�&�R�U�W�D�Q�D���� �\�R�X�� �D�U�H�� �J�U�H�D�W�´��   Social conversation is one of 
several customers of a system like ICE.  Other applications 
include web search, email classification and telemetry. 

 

5. Related Work 
ICE builds upon recent advances in interactive machine 

learning and distributed systems. The following presents work 
relevant to ICE. 

 

5.1 Interactive Machine Learning 
Different fields have independently introduced systems that 

iterate through labeling, model refinement and output updates in 
an interactive way. Such systems can target non-technical users. 
For example, relevance feedback mechanisms in Information 
Retrieval is one of the earliest form of interactive learning 
[17][18]: in a retrieval scenario, the user receives a document 
ranking from an initial query and marks some of the documents in 
that ranking as relevant or non-relevant. The system then takes 
this feedback into account to compute a new ranking. Similar 
mechanisms have also been proposed for recommender systems 
[1][16]. In these cases, the end goal is not to produce a model but 
rather to assist quickly the user to find a small set of relevant 
items. 

The idea of interactive model building grew with the field of 
active learning [19]. Active learning studies learning algorithms 
and sampling strategies to learn models by actively querying 
human labelers. It aims at understanding the impact of biased 
sampling on generalization performance and proposing practical 
solutions with theoretical convergence guarantees. Theoretical 
works percolated to practical applications. Interactive training has 
been applied to computer vision tasks such as image segmentation 
[8], image classification [10], or gesture classification [9]. 
Interactive learning has also been applied to text classification 
tasks [11]. In particular, different forms of interactive featuring 
have been explored over text data [2][6][20]. 

ICE differs from prior work by its generality as it can be 
applied to different data types (e.g. web-pages, raw text or 
images) and ML tasks (e.g. classification or segmentation). It also 
differs by the dataset size it can manipulate. To our knowledge, 
ICE is the only active learning system that enables building 
models over 100 million items with interactive speed. 

5.2 Distributed Systems for ML 
Distributed systems for machine learning commonly refers to 

parallel learning algorithms designed to carry the training 
optimization over large datasets, e.g. map-reduce for expectation 
maximization [5] or parallel asynchronous stochastic gradient 
[14]. Our application is different. Training is typically inexpensive 
and performed on a single machine because ICE's training sets are 
limited to the labels produced by one user over an interactive 
session. Our challenge resides in model scoring. The interactive 
loop frequently produces new models, and we require the system 
to compute quickly model outputs over large datasets for active 
sampling. Our computational requirement is therefore similar to 
the one driving the design of Spark [23], a cluster computing 
system for interactive data analysis as discussed in Section 3. 

6. Discussion and Future Work 
High performing classifiers and extractors on lopsided 

problems are important. The traditional approach to create them is 
inefficient and requires hard-to-come-by (and expensive) ML 
expertise. To improve on cost, speed, and expertise requirements, 
we turned to interactive learning and built an environment that 
enables teachers to quickly interact with data at scale with ML in 
the loop.  

The resulting platform, ICE, is being used for two purposes: to 
allows ordinary people to build ML models over big data from 
scratch and in a few hours, and to enable researchers to explore 
the challenges of interactive learning. The paper presents the 
important choices we made to create an interactive ML 
architecture, and some results we obtained from non-expert early 
adopters. 

The architecture of ICE is very similar to the architecture of 
Spark. This is remarkable because ICE was designed specifically 
for interactive learning and Spark was designed with a more 
general ML platform in mind.  The two designs share a large 
distributed immutable in-memory column store. Spark 
implements an in-memory version of Map-Reduce. ICE supports 
a limited version of Map-Reduce, without GroupBy, which 
permits every column of a given row to reside on the same 
machine and reduces the intra-cluster communication. ICE uses 
this property to implement a highly optimized instance of Map-
Reduce dedicated to filtering by score (for active labeling and 
exploration). The ICE map-reduce is available to engineers 
building the datasets, but not to the teachers. A low priority Map 
is available to the teacher for computing new features on the large 
dataset (computing features on labeled sets remains very fast). 
These policies are in place to ensure that all available computation 
power is used to minimize �W�K�H�� �U�H�V�S�R�Q�V�H�� �W�L�P�H�� �I�U�R�P�� �W�K�H�� �W�H�D�F�K�H�U�¶�V��
point of view. Despite these differences, it is possible that Spark 
or a similar platform could be used by ICE in future iterations.  

Classifiers built in a few hours by non-experts using the ICE 
perform reasonably well compared to the state of the art. Our 
ultimate goal, however, is to enable anyone to build models in a 
very short time that perform as well or outperform models built by 
ML experts via traditional means. 

Once the paradigm of interactive ML is adopted, we can think 
of many directions of research to improve the learner, the teacher, 
and/or their interaction. For instance, a promising approach that 
does all three is to enrich the feature language used by the teacher 
to tell the model what to observe. Preliminary results indicate that 
we can extend the user-supplied dictionary features (for text 
domains) beyond literal string match to create significantly more 
powerful and informative features. Consider, for example, a 
dictionary feature that contains the abbreviations for the US 
�V�W�D�W�H�V���� �Z�K�H�U�H�D�V�� �W�K�H�� �X�V�H�U�� �K�D�G�� �W�K�H�� �F�R�Q�F�H�S�W�� �³�8�6�� �V�W�D�W�H�´�� �L�Q�� �P�L�Q�G���� �D��



literal string match will result in the feature being on for every 
�L�Q�V�W�D�Q�F�H�� �R�I�� �³�L�Q�´�� ���,�Q�G�L�D�Q�D���� �D�Q�G�� �³�R�U�´�� ���2�U�H�J�R�Q������ �Z�K�L�F�K�� �L�V�� �O�L�N�H�O�\�� �W�R��
diminish the utility of the feature. As an alternative, we are using 
the entries in each dictionary to build automatically (i.e., from 
unlabeled data) a common context model that identifies 
surrounding string contexts where multiple dictionary entries have 
high probability of appearing; by shifting from literal strings to 
context models, the dictionary features can match strings not 
explicitly given (e.g., common misspellings) and can non-match 
�R�Q�� �V�W�U�L�Q�J�V�� �H�[�S�O�L�F�L�W�O�\�� �J�L�Y�H�Q�� ���H���J������ �Z�K�H�Q�� �³�L�Q�´�� �L�V�� �Q�R�W�� �X�V�H�G�� �D�V�� �D�� �V�W�D�W�H��
abbreviation). On the few classification examples we investigated, 
t�K�H�V�H�� �³�F�R�Q�F�H�S�W�´�� �G�L�F�W�L�R�Q�D�U�L�H�V��have proven to be far superior to 
�³�O�L�W�H�U�D�O�´���G�L�F�W�L�R�Q�D�U�L�H�V���E�H�F�D�X�V�H��they only need few words to define a 
common context (efficient), they are not blind when none of the 
words in the dictionary appear in the document (better recall), and 
they seldom fire in the wrong context (better precision). 

Another promising research direction is to provide tools to 
�H�Q�K�D�Q�F�H�� �W�K�H�� �W�H�D�F�K�H�U�¶�V�� �D�E�L�O�L�W�\�� �W�R�� �G�R�� �H�[�S�O�R�U�D�W�L�R�Q���� �� �)�R�U�� �L�Q�V�W�D�Q�F�H����
different metrics (in exotic feature space) or external information 
sources like a click graph from a search engine (connecting query 
nodes to document nodes) can be used to suggest positives for 
queries or for web pages. 
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