ICE: Enabling Non-Experts to Build Models
Interactively for Large-Scale Lopsided Problems

Patrice Simard, David Chickering, Aparna Lakshmiratan,
Denis Charles, Léon Bottou, Carlos Garcia Jurado Suarez,
David Grangier, Saleema Amershi, Johan Verwey, Jina Suh

Microsoft Research
Redmond, WA

patrice @microsoft.com

ABSTRACT

Quick interaction between a human teacher and a learning
machine presents numerous benefits and challenges when
working with web-scale data. The human teacher guides the
machine towards accomplishing the task of interest. The learning
machine leverages big data to find examples that maximize the
training value of its interaction with the teacher. When the teacher
is restricted to labeling examples selected by the machine, this
problem is an instance of active learning. When the teacher can
provide additional information to the machine (e.g., suggestions
on what examples or predictive features should be used) as the
learning task progresses, then the problem becomes one of
interactive learning.

To accommodate the two-way communication channel needed
for efficient interactive learning, the teacher and the machine need
an environment that supports an interaction language. The
machine can access, process, and summarize more examples than
the teacher can see in a lifetime. Based on the machine’s output,
the teacher can revise the definition of the task or make it more
precise. Both the teacher and the machine continuously learn and
benefit from the interaction.

We have built a platform to (1) produce valuable and
deployable models and (2) support research on both the machine
learning and user interface challenges of the interactive learning
problem. The platform relies on a dedicated, low-latency,
distributed, in-memory architecture that allows us to construct
web-scale learning machines with quick interaction speed. The
purpose of this paper is to describe this architecture and
demonstrate how it supports our research efforts. Preliminary
results are presented as illustrations of the architecture but are not
the primary focus of the paper.

1. INTRODUCTION

The detection of rare concepts is helpful in several application
domains. In web search, for example, we might want to
distinguish book-review pages from the rest of the web. Other
applications include online advertising, retail monitoring, medical
imagery or telemetry. Machine Learning (ML) offers solutions to
building predictive models in such lopsided problems.

Current ML solutions to these problems typically involve a
“loop” of activity that works something like this. First, we collect
a sample of data to label. For lopsided problems where labeling is
not free, this sample is typically biased in some way to avoid
having to label too many examples. To appreciate this, suppose
that about one in every ten thousand web pages is a book-review
page, and we sample uniformly from the web to collect data to
label; if it requires on the order of a thousand examples of book-
review pages to predict them accurately, then we would have to

label on the order of ten million web pages before we had
sufficient data. Second, after collecting the data we need to have it
labeled, usually by human judges. Third, we need to design good
features that the machine-learning algorithm can use to model the
labels in the data. Good features for a book-review classifier, for
example, might be n-gram features that are more prevalent in
either book-review pages or non-book-review pages. Fourth, we
train a model on one subset of the labeled data, and evaluate its
performance on another subset. Depending on how satisfied we
are with the performance of the model, we can loop back to the
third step to choose better features (i.e., try to increase
performance on the existing data), we can loop back to the first
step to gather more data, possibly using our model to inform how
to bias the sample, or we can decide to deploy the model in our
application. After deployment, we might also decide to visit the
loop again if we observe unexpected costly errors.

There are two significant problems with this methodology
which limit its effectiveness. The first is that in order to be
successful, a machine-learning expert is likely required in more
than one of the steps: getting a biased sample to label that will
result in a model that generalizes to unbiased data is a difficult
ML problem, and designing features that work well might require
expert understanding of the ML training algorithm. Because
machine-learning experts can be hard to come by and expensive,
this limits the modeling problems that are deemed worth solving.

The second problem is that iterating through the steps of the
loop can take a very long time, due both to the work involved and
the coordination required of the (likely many) people involved. In
addition, because each iteration of the loop is costly, there is a
tendency to try to minimize the number of times we iterate, which
results in maximizing the number of labels we collect at each step.
But labeling large batches of data at each iteration results in a loss
of agility in the process. Suppose, for example, that after the first
iteration through the loop, the book-review model is predicting
that many magazine-review pages are being erroneously labeled
as book reviews. The system designer might decide that
magazine-review pages are, in fact, appropriate positives for the
problem at hand and want to change the definition of the rare
concept. But such a change in definition might invalidate much of
the labeled data.

To overcome these obstacles, we turn to interactive ML,
which interleaves human input, training, scoring, and machine
feedback in a real time loop. In this setting a single teacher
performs all of the functions of the domain expert, the labeler, and
the ML expert. At every step, the teacher learns from the machine
and the machine benefits from the human guidance. The feedback
allows the teacher to gain necessary (empirical) expertise to best

IUSUHSGL
BB (), iiaady

@

USSR (), H
J"0I(12(%*34'5
I HSUBE)+, @z
633"57$/8(%" (344398’

BB+,
. I"0(12(%*34'5

o8

Figure 1. The world according to the teacher and the
model.

BOHSE)+,
10/(12(%*34'5

guide the training process without (theoretical) ML expertise.
With the proper architecture, instantaneous machine training and
evaluation over large datasets can shorten the typical loop above
to seconds per iteration. In addition, access to large datasets
enables the teacher to explore the data efficiently to surface rare
examples.

Figure 1 helps us visualize the “world view” of the teacher
and the machine during interactive ML. Consider again the book-
review classification example. Initially, from the teacher’s point
of view, book reviews are contained in the small blue circle and
all other pages are contained in the small grey circle. We imagine
a “ground truth”, represented by the two orange circles, of which
the teacher is not yet aware because of either ignorance or lack of
clarity in the definition of a book review. From the perspective of
an early stage classifier the book reviews look like the green oval.
Through the process of interactive ML, the goal is to get the blue
and green shapes to mold toward each other and converge on
ground truth.

We built a large scale interactive ML system called ICE
(Interactive Classification and Extraction) designed to leverage
the capabilities of both humans and machines. Specifically, ICE
enables ordinary people to train interactively both classifiers
(functions that map an input item to one or more discrete classes)
and extractors (functions that map an input item to a sequence of
annotated segments) using large datasets containing 100 million
examples or more. It allows teachers to build models on lopsided
problems in a few hours without the need to pre-filter the data.

Building a large scale interactive ML system is not without its
own research and engineering challenges. Interactivity requires us
to train models and compute their output over large datasets in
seconds. It also requires visualizations for the human to assess the
model performance, understand errors, and make the right
decisions in terms of the needed features or areas to explore. It
further requires an interface for non-experts to label and provide
features. Interactive learning also raises new questions for ML: Is
it possible to derive learning algorithms whose diagnosis is easier
for non-experts? Can we evaluate and even provide guarantees for
an active learning scenario in which the human teacher
dynamically refines the problem formulation?

The purpose of this paper is to describe the key features of our
system and the corresponding architectural decisions we made to
support these features. Our decisions were driven by the need to
balance both (1) traditional ML objectives such as generalization
accuracy, and (2) user-experience objectives such as efficiency,
understandability, simplicity, and empathy with the learning
algorithm.

(# of items

0 0.25 0.5 0.75 1
P(C|features)
Figure 2. Typical distribution of a model score.

The rest of this paper is organized as follows. First, we
describe how ICE enables ordinary people to build models from
scratch in a few hours. This includes describing ICE’s interactive
labeling and featuring loops, as well as introducing user
interaction with the ICE interface. Then, we describe the
distributed architecture required to enable interactive labeling and
featuring at the speed and scale necessary for maintaining user
engagement and effectiveness. Next, we present preliminary
results on using ICE to build classifiers over web page data.
Finally, we discuss open questions and related work.

2. ICE

In this section, we describe interactive labeling, interactive
featuring and the user interface of ICE. We designed our system
to allow a single teacher to train models interactively, and our
description emphasizes this bias. As we describe below, however,
we designed the system to encourage teachers to import others’
models and features into their own sessions to be used as features.
This functionality means that the value from a community of
teachers on ICE can be much more than the sum of the value from
each individual. We also envision ICE supporting cooperative
teaching scenarios, where multiple teachers contribute to the same
learning task [21].

2.1 Interactive Labeling

As discussed in Section 1, lopsided problems require us to
train models on a biased sample. When a teacher first starts
working with ICE (that is, when there is no model available to
help choose these examples), the teacher needs to have a
mechanism to reveal a-priori knowledge about the rare event in
order to extract examples. In ICE, we enable the teacher to search
the dataset for examples to label. Sampling by this approach
alone, however, can lead to an undesirable biases due to the
teacher not understanding or explicitly exploring the rare class to
its full extent. For instance, the teacher might not know about or
remember to retrieve all types of ethnic recipes. Consequently, a
recipe classifier built only from examples found by a teacher’s
search might perform poorly in a real-world deployment. To deal
with the teacher’s ignorance about the distribution, we enable
active learning to allow the system to select automatically
examples that are deemed valuable to label. In this framework,
teachers can be ignorant of the distribution as long as they can
correctly label items on demand.

After the initial ‘cold start’ period when no model is available
to help choose examples, ICE’s interactive labeling loop
alternates between the teacher labeling items and the system
selecting items to label next. At any point in time, the teacher can

take the initiative to search for items to label with a query. A new
model is trained whenever sufficient additional labels have been
submitted by the teacher. New models are immediately applied to
the unlabeled data, producing a fresh score for each item. The
system samples the next items to label according to the latest
scores available. This active-learning strategy is efficient for
labeling because it focuses the W H D Faltehntidif[od items that are
more likely to be mistakes and whose labels can yield better
subsequent models, resulting in faster learning overall (see
Section 4 on active learning). To appreciate this, consider Figure
2, which shows the number of items in the dataset as a function of
the probability of a rare class according to a typical probabilistic

classifier. Active-OHDUQLQJ VDPSOLQJ VWUDWH, fhfnfﬂ Matfe
ULJKW" WR DYRLG WKH YDVW PDMRULV\éAreBVﬁ

chance (according to the current model) of being a positive.

From the system Werspective, interactive labeling is a time-
sensitive and demanding process. As the teacher provides labels,
the system produces a model, which involves training and
validating hyper-parameters (e.g. regularization parameters) in a
few seconds. Automatic validation is important because non-
expert teachers are not expected to provide hyper-parameters, and
it is computationally intensive because it trains a family of models
from which to select. Once the selected model is available, the
scoring computation starts. Our infrastructure computes the score
of each item, relying on parallel processes on multiple machines
(see Section 3). Depending on the size of the dataset, scoring all
items might not be performed in a few seconds. Even in this case,
the teacher should not wait, the scores should not be outdated, and
all of the data should be available to sample. We therefore keep
the most recent computed score in memory for all items. We also
score each item to be shown to the teacher with the latest scorer if
needed. To maximize score freshness, scoring with a new model
starts by interrupting the previous scorer and scoring begins where
the previous scorer was stopped. Note that the quality of the
selected items to be labeled next may degrade if too few items
have been re-scored since the last scorer was produced. Efficient
scoring in ICE is discussed further in Section 3.

Given a set of features (see Section 2.2), interactive labeling
implements a fine-grained version of the traditional collect-label-
feature-train-evaluate loop by updating the model within seconds
after a teacher action. This means that the teacher is always
confronted with the samples based on the most recent model. The
teacher also has access to performance estimates for this model,
which avoids the need to fix problems that have already been
solved by new labels or features. Additionally, interactive labeling
allows the teacher to revisit the concept definition over time
without incurring such a high cost as in the traditional loop. The
teacher can edit the previous labels or submit a new query to
reflect this change at any point in time, which is much more
flexible than (e.g.) writing new labeling guidelines to be sent
along with data to a third party labeler. This highlights the benefit
of interactive labeling for exploration. Our strategy not only
enables the teachers to provide semantic information but also
provides them with the seamless assistance of a large-scale system
to evolve their mental models of the task.

2.2 Interactive Featuring

The performance of ML algorithms depends on the
representations of the data, or features. The choice of features can
greatly impact the number of training labels required to achieve a
given test accuracy. The choice also affects the overall running
time of training/testing and impacts the ability for human
operators to understand model scores and diagnose accuracy
issues. In particular, the set of features should achieve a delicate
balance between (1) being representative enough so that the
model can discriminate between items for the task at hand and (2)
being simple enough to prevent the learning algorithm from being

fluenced bg irrelevant d1st1nct1ons between items when few

QQVNBE, s take grea
entdd¥i Mrﬁg Y feléﬁ{h% QeWTh E]f!rla% 2 Ili%t}{l:m/%asgt R

specific, and its definition requires alternatlng between training a
model, looking at its errors, and implementing or refining feature
functions. This task requires both intuition about the semantics of
the problem and understanding of the model errors.

ICE enables non-expert teachers to define the appropriate
feature set through interactive featuring. Interactive featuring
includes the creation, editing, and refinement of features. It
integrates with interactive labeling in the same user interface (see
Section 2.3). At any point in time, the teacher can decide to label
or feature by inspecting the model performance and exploring its
errors. Interactive featuring encourages the teacher to interactively
compose a small set of useful features, keeping the complexity of
the model to a minimum. This strategy avoids complex models
with large number of features which are likely to work well in an
initial phase, but may quickly leave the teacher with an intricate
model that no obvious decision can improve. After providing each
feature or label, the teacher can explore the model errors, interpret
them and decide how to fix them through search, active learning
or featuring. This decision of how to fix errors can be driven by
contrasting training and test errors: training errors often can
surface missing features, showing that the model is blind to some
types of item characteristics, whereas testing errors can often
suggest that more labels are needed for a particular area of
examples.

ICE allows teachers to add three types of features: (1) built-in
features, (2) features that are themselves learned models built by
ICE teachers, and (3) teacher-defined features. Some of these
features support per-item visualization to help the teacher
understand their effect. Built-in features correspond to typical
features used in the literature for classification and extraction, e.g.
bag-of-words, regular expressions for text tasks, and edge
detectors for images. Features that are learned models offer the
opportunity for teachers to decompose their tasks into sub-
problems. These features also offer the ability for a teacher to re-
use relevant models already built by someone else. For instance, a
teacher working on image classification to detect mountains can
re-use or build a separate model to discriminate between indoor
and outdoor pictures. Teacher-defined features includes generic
functions that teachers can import by providing a dynamically
linked library or features that can be edited from the ICE interface
itself.

Figure 3. The main ICE interface (left) along with a supplementary window displaying performance metrics (right). On the
right of the main ICE interface, the user can inspect and label data (e.g., four pages are displayed in this figure, three labeled
positive and one negative). The left panel contains features already supplied by the user for this classifier via active featuring.

The supplementary window on the right display standard performance metrics (e.g., precision and recall) to help the user
monitor their classifier’s progress.

In the following, we illustrate the benefit of ICE-editable
features by describing dictionaries a type of feature that the
teacher can edit interactively for text tasks. A dictionary defines a
semantic concept through a list of related words. For instance, a
set of months H J

and scoring starts automatically after modifying features or
providing labels. The teachers are always aware of the state of the
system as a status bar indicates which actions are not yet reflected
in the current model.

3-DQXDU\ " «3) AEHUKHIPYEH U~ Figure 3 shows the ICE interface for a classification task.

FDSWXUHV WKH S0RQWKV"™ FRQFHSW 7 KHWhERtthhdrs it Wildink FdddIsRiQIDR) thedy $1ddt MviKakt U

form a simple model for a token-level feature that optionally can
be aggregated at a document level by computing statistics
between a document and the given dictionary (e.g., how many
words in the dictionary appear in the document, how many
distinct words of the dictionary appear in the document). During
an interactive model building session, the teacher can add, remove
or edit dictionaries. We have a variety of auto-suggestion tools
that help users complete partially constructed dictionaries using
(e.g.) Wikipedia infoboxes. Each dictionary establishes an
equivalence class over words and enables the learning of models
that can generalize over words which might not even occur in
training examples.

2.3 Interacting with ICE

ICE enables teachers with no expertise in machine learning to
build classifiers and entity extractors. ICE's user interface reflects
this objective and allows a few key actions that do not require ML
or engineering skills. The teachers using ICE can (1) search or
sample items to label, (2) label these items, (3) select and edit
features, (4) monitor accuracy and (5) review errors. Training,
scoring and regularizing are not teacher actions on ICE. Rather,
these computations happen implicitly and transparently. Training

one initial feature and they search for some seed positive and
negative items via a text query. They can then label data resulting
from the search and submit these labels (top right of main window
in Figure 3). From this point, ICE automatically trains a model
and starts making predictions on new data, i.e. producing scores.
The teachers can then sample data that are deemed useful to
improve the model (active learning), or keep searching the
dataset. If a model is available (i.e., after the cold-start period),
ICE pre-labels the examples shown to the teacher with the current
model TV PRIWprediction. As a result, the teacher can label
efficiently by simply correcting those pre-labels that are not
correct. Moreover, the process of explicitly correcting the model
helps the teacher understand the weaknesses of the current model.

Teachers can supply features to ICE via the panel on the left
in Figure 3. The teacher can either browse a corpus of existing
features or create a new feature from scratch (e.g. dictionaries).
Features that represent the information that the model currently
M VsHakt always visible in the interface.

At any point in time, teachers can evaluate their models: ICE
splits the labeled data into a training and test set so that it can
compute and display performance metrics, including estimates of

o
30/45% I HSUS%8()*$+)

305742#2$0%'
AH2HD 5)24-#24 J#-I01 305742)'80-)
(20")
L 305742)'80-) 30/45%
i 6)2#-#2t
305742)'80-)
(;9'()<<$0%". 90;—"?(’)‘/4@/“)
=)<<$0%< 5)2#4#2#
#1)1<' "4$
?)#24")@ 30/45%".
Figure 4. ICE Services

the generalization performance (right in Figi)e To help the compute or datantensive operations are delegated to backend
teachemonitor progress, ICE graphically displays the number of services.
positive and negative examples provided by tkacher (to 3.2 ICE Services

encourage a balance of positive and negatives) as well as ICE provides four services that can be categorized into two

precision and recall ovetime and overvarious prediction types: there are two data services and two computation services
thresholds. Every time a new model is trained, these performance pes- P

; : ! : see Figure 4)The data services are realized via a machine
metrics are automatically updated in the interfacsachersalso (.) .
have access to a review parbht shows their current labels, running SQL server with a 20TB RAID 6 disk stofEhe two

along withthe modelspredictiors. The interface highlightsrers ﬁgr\?gu;?::gn:ﬁtrvgjsegéﬁ dusc?c;jlamteﬁl;:g/rilyeg)y ?cii;?/aecﬁﬁgsand
and allowsthe teachetto sort and filter data, e.g. to view the 9 Y 9 ¢

model’s predictions on the test data or to view only false interactivity, he computatiorservices are realized via a cluster of

positives/negatives. The review interface also enailesherso Sgrv?gizhg]ssn?tci t(‘;vrléhaLZ8S(])Sm()fugeudd\gétgc}i:rrﬁgﬁlggtt?no&stea d
edit their labels if they made mistakerif their undersanding of . y P P Y. o
the concepof interestevolves. they store the functions used to compute the data along with

Teacherare therefore empowered to label, feature and search.;eefs/riiggefo t(r)e;?;tt)? srté)ricri]elgt;heandae{;/:\:/eizjusTf:OgII?Jvtv;tig;]e The
They can understand the performance of the nsadey produce. y €9 y P P)

) . . computation functions are submitted and stored as .NET
When they feel confident about their model, it can be exported forassemblies that can be dynamically loaded. This ¢ o5 the

deployment. ability to add functions to the system withothe need to
3. System Architecture recompile or restart any processes.
ICE’s architectureis split into three components(l) a In the following subsections, we provide details for each of
teacheifacing client applicationfor driving the ML workflows, the four services.
(2) a set of services for computation and data steragd (3) 3.2.1 RawData Service

offline tools for datamport

Each component idesigned to operate on arbitrary data types
that need not be known in advance. In order to support this
generality the systenmust beextensible such that new data sets
can be supported without changing base system.

We enableextensibility by delegating some tasks to system
extensios we refer to aplugins Plugins extend the system on
both the frontend and the on the backend. On the backend the
provide a set of functions that map the raw data inttufea or . .
known data typesipon which features can be built (e.g. stéhg 3.2.2 Session Data Service
On the frontend they provide visualizatiothat the client can The Session Data Servigeliably stores alteacheradivity
display to theteacheras well as metadata about the item that can associated witla modetbuilding sessionwe include time stamps
be used to enhance the visualization. For exani]’p|me case of with everyteachenaventso thatwe can reconstruct the state of the

text, the bounding boxes of the tokens are surfaced to provide Session corresponding to apgstpoint intime. Thedata is stored
feature visualization and entity labeling. in a SQL database and is exposed to the clfentigh an OData

3.1 ICE Client APl . .

The ICE Client is a Windows desktop application built on 3.2.3 CqumnCom_putan_n Service .
NET and Windows Presentation Foundation using an MVVM The colum_n computation service pe_rforms computations that
(Model, View, View Model) architecture. It providesianterface ~ Involve the entire dataseffeaturing, scoring andampling) The
for various tasks such as labeling, featuring and progress
reporting. Both the user interaction and the session workflow of ;
building modelsare defined and run on the cliemthereasthe

At a basic level, ICE stores rawyte array data in a reliable
way (a RAID system or cloud based redundant storage) and
makes it available to the rest of the system via the Raw Data
Service.The service only deals wittaw dataand is agnostic to
higher level data types. The data is stored andrizgd in groups
called buckets Grouping the data items in buckets simplifies
metadata management. In addition, it allows us to group large
¥hunks of data for more efficient I/O.

http://www.odata.org/

service runs on a distributed column store that caches a copy of all
or most of that data. Intuitively, the columns are simply the
(named) values stored for each row.

For the purpose of this section, datasetcan be understood
concretely as a collection of items of the same type of data (e.g.,
webpages, images, emails, news articles) for which features are
computed. These features, in turn, are the inputs to the ML
algorithm. Although (as we discuss later) we allow administrators
to append data to an existing dataset, it is convenient to assume
that datasets contain a fixed number of rows. The specific
ordering of rows is assumed to be arbitrary but fixed so that items
can be referred to uniquely by their row number (called rowld).

Featuring can be understood as the teacher providing a
computable function of the items or other previously provided
functions. In ICE, such features are special types of columns
called &columns? that are maps on other columns. Scoring is also
expressed as a &column of the features and the data that
determines the models (e.g., the feature weights). Sampling (i.e.,
the task of selecting items to label) is expressed as an aggregation
on the dataset. We also support text queriesfor certain datasets
using a reverse index on the items.

We require that the column store supports random access to
the rows in the dataset for two reasons. First, the training service
(described in the next section) queries the column store for the
feature values corresponding to the labeled items. Second, the ICE
client queries the column store to extract, with low latency
requirements, column values (e.g., features) for specific items that
are being labeled.

As is evident from the above discussion, a general map-reduce
framework (e.g., [7] or [4]) captures many of the requirements for
our system. In what follows, we describe the differences between
our system and existing solutions. This will help illustrate some of
the architectural needs that arise from the specific use of the
column store for large scale interactive ML tasks.

In-memory column storeAn important constraint on the
design of ICE is imposed by the requirement of interactivity. This
means that all the actions where the teacher is sensitive to latency
on the part of the system have to be fast. In particular, querying
and getting items to label has to be very fast. Running
aggregations corresponding to a teacher sampling the data has to
be very fast. Also, scoring cannot be too slow or at least must
score a diverse set of items as various iterations of the model are

Data Layout.A column is split into multiple chunks, called
buckets of contiguous rows; these buckets are distributed across
many machines. The data layout has the additional property that
all the columns corresponding to the same row are present on the
same machine. This design decision imposes the constraint that all
the information needed for a model to score a single item is
present on the same machine. In practice this is not a limitation
because the feature vectors are not too large. Each bucket stores
the starting rowld of the items in the buckets and one can compute
the rowld for any item in the bucket by examining the offset of
the item. Metadata specific to a dataset gives the mapping of
intervals of rowlds to machines.

Aggregations.ICE supports global associative aggregations
and joins on the N K S ke@and more general reduce operations?
are not supported. This is a simplification that arises as a
consequence of ML tasks generally either needing to sample the
data or compute statistics (e.g., TF-IDF) over the dataset. Such
aggregations can also be run on multiple columns simultaneously.
An example is an aggregation where an item is picked uniformly
at random from unlabeled data with a score between 0.70 and 0.75
and a particular feature is also present. In this case we would
aggregate the score column and feature column, ignoring rows
where the feature is absent, and do a reservoir sampling for items
with a score in the desired range. ICE allows for the results of an
aggregation to be wrapped in a column. This means that the
aggregation result is repeated for each row in the column (though
it is not stored this way to conserve space). This is especially
useful when the results of an aggregation are used in a &column.

Reverse index for text searched.abelling for text
classification tasks benefit from supporting literal text queries.
This allows for efficiently finding examples in the positive class.
In ICE we enable this by allowing a reverse index on certain
string columns. These indices are built at a machine level. For text
queries the results from each of these machines are ranked based
on their Okapi BM25 score (see [15] §11.4.3).

Scoring.In ICE the score column is special and we explain
how it is treated differently first. As the teacher labels new data,
the classifiers or extractors are retrained and the items are re-
scored with the latest model. The new scores are used to select
which item to label next (e.g., items whose probability or being
positive is between 0.7 and 0.8).

One problem that arises when successive models are built in a

trained so that the teacher FDQ LQVSHFW WKH RXW Ssés¥ibnRslthity $¢dies3For dild bhddmay not be comparable to

model on a fresh set of inputs. Traditionally, map-reduce systems,
such as Hadoop or Dryad ([7] , [4]) are geared towards batch
processing of large data and as such make a poor fit for our
interactivity needs. For ICE, we designed the column store to hold
most of the columns in memory (i.e., in RAM) instead. For
webpage datasets, for example, we hold the text content (and
layout geometry information) of all webpages in memory on the
cluster. Furthermore, feature columns and scores are also held in
RAM. There are certain columns, such as the rendered images of
webpages that are too large to hold in RAM for the size of
datasets we consider. The teacher typically inspects only a few of
these in the course of labelling. Thus we load these on-demand
from the disk. More recent in-memory map-reduce systems such
as Spark [23] are more similar to the ICE column store. The
differences with such systems have more to do with trade-offs we
make in ICE so that certain operations that are needed for
interactive learning are even faster at the cost of less generality.

2 The terminology is from lambda calculus.

scores from another. Having comparable scores can be important
for sampling correctly, and so we include support for
automatically calibrating the scores. For example, when the score
represents a probability of an item belonging to a class, we use
isotonic regression to keep these scores calibrated.

Another problem that arises is computational. Scoring is often
much slower than labeling or re-training because it can involve
scoring the full data set. This means that the teacher would have
to wait for scoring to complete if only the scores from the latest
scorer were to be used. To circumvent this problem, the score
columns can contain values that have been scored by different
versions of the model. Intuitively, these columns can be thought
of as having their values arranged in a circular list, and the latest
available model is used at all times to overwrite these values.

3 The limitation to global associative reduce operations (i.e.,
associative aggregations) is similar to the original design
decision in Spark [23]; more recent implementations of Spark
allows general reduce operations (and even DAG workflows

[24]).

Aggregators have access to the version number of the model usetest is 1.2 GB). The following table summarizes the results and
to produce the (latest) score of each item, which allows much shows equivalent performance across both systems (times in
flexibility for sampling algorithms during the interactive loop. milliseconds):

Despite these latendyiding techniquesthe speedof scoring
remainsimportant because scores from more receatielsgive

better feedback to the teachétaving nore machines results in ! "#P%K: ‘0!
fresherscores and more efficietabels, but the behavior degrades *$#l+ - /01 | 2349 26589
gracefully whenfewer resoures are available The mechanism 789. 8141 | 66! 6!

that ICE uses to increase the number of items that have fresh
scoresis a distinguishingfeature of ICE in relation to general

urpose systems like Spark. .. .
purp Y P 3.2.4 Training Service

The Training Service is responsible for hosting a catalog of
trainers (e.g., modetbuilding algorithms). These trainers can be
! o . .._grouped intdfamilies, which correspond tgroupsof instances of
approach to.f.ault tolgrance is specifically designed to. support' 'tsthesealgorithmsconfigured with different hypeparameters. A
data availability requirements. The Column Computation Service ICE session uses the training service by selectirtgamer or
allows access to data in two distinct ways: a) fe_tchlng speu_ﬂc row family and requesting thétis run on its particular training set. In
values for a column and b) aggregate operatiofes the entire 5 caqe of a familythe training service can run all member

data set, such as sampling queries, aggregation computations (€.gyqrithms in the family and select the best model based on cross
IDFs) or text queries. Having specific row values always available validation of a given metric (e.g. AUC).

is importantbecauséhey may be needed to presentitem to the
teachey or to collect feature values fdraining. In contrast, 3.3 Data Import Tools

aggregate operations can be robust to a portion of the data Bringing data into ICEequires an administrator to provide an
missing. For example, sampling by score or searching can yieldimporter object (in a dll) that can enumerate the individual rows

3.2.3.1 Faulttolerance
As in any distributed system, failures are expected.(YV

good results even if they are not run over the entire data set. of some rawdata source. Importantly, the details/typefsthis
For this reason, ICE only guarantees avdlitgtof all thedata data do not need to be known by ICE; rather, the corresponding
for single row accesses. If a compute node gdiise and a row labeling and featuringlugins are the only components that need

value is needed from data hosted by this machine, the request i€ be able to translate the raw data into types (labels and features)
redirected to anothemndomcompute node. This alternate node that are understood by ICE. An important aspect of ICE data sets
fetches the raw data for this row frolmetRaw Data Service and is that they areappend only. New items can be added, but
any lambda computations needed to produce the value arepreviously imported tems are kept in immutable form.
executed on demand. While this is much slower theressing Immutability of the raw data is key to being able to guarantee
pre-computed values cached in memory, the number of rows for immutability of the columns that are computed from it.

which this needs to happen is generally small, wiielkes this a
viable solution. 4. Results

3.2.3.2 Benchmarks In this section, we present some preliminary results from

. . - people using ICE to build classifiersnostandard text
ICE has been tested withdata sethatconsists of 35 million celassification tasks.

web pages deployed across 35 compute nodes. The pages ar
saved in a proprietary format that includes a snapshot of the .
rendered page along with all ehtext and DOM structure 4.1 Experiments

information. This data set occupies 4.5 TB of disk space and a Recall that our goal with ICE is to enable everyday people to
separate version without the page images is also maintained foitrain ML models from scratch over big data. This requires
faster access and occupies 710 GB. The extracted text and htmbalancing traditional ML performance metrics (such as
geometry measures around 182 GB andithike portion that is generalization accurapywith userexperience metricgsuch as

kept in memory on the compute nodes. efficiency, understandability, empathy with the learning
In terms of computation speed, running a linear classifier with algorithm, and simplicity Therefore, here we present results
dictionary features (precomputedl takes approximately 2 pertaining to both To create ourground truth, we gathered

seonds. This corresponds to scoring >800 documents per webpages with labels provided by the Opeine€tory Project
second per coria the clusteand is an area of the system than can (ODP) and crawled the URLs to get the HTML and text. Any
be further optimized. pagesthat timed out wereredirected or which contained fewer
As mentionedearlier, the most important aspect is querying than 100 charactersere excluded from the set. The resulting
speed. The system can scan classifier scores for all 35 milliontruth setwas split randomly into a 70% train set wis30,398
pages in under 250 ms, which gives good interactive examples and a 30% test agth 140,839 tesiexamples
respnsiveness to thieacher
For comparison purposes, we ran a map/reduce test in both
ICE and Spark The task consisted of a map counting the number
of occurrences of a word in 40000 pages from the fg2n
Directory Project, followed by a sum global reduction. This was
done on an 8 core system with GB of RAM (the data for this

4 We chose Spark for this comparnisbecause that is the system
closest to ICE in capabilities. 5 http://www.dmoz.org/

—_—
Home/Cooking T

\! \
0.6+ 1 0.6
—— ODP Labels BoW Features |

—— ODP Labels BoW Features
— ICE Labels BoW Features ‘l | —— ICE Labels BoW Features
ICE Labels Dictionary Features ICE Labels Dictionary Features

Precision

Precision

T T T T
o 0.z 0.4 0.6 0.8 1

Recall Recall

;6 N

—— ODP Labels BoW Features A

— ICE Labels BoW Features
ICE Labels Dictionary Features

Precision

Recall

Figure 5. Performance of ICE built classifiers compared to classifiers built via traditional means (i.e., a large labeled daget
using bagof-words features).

Our participants for this experiment were members of our labels In all cases, the classifiers were trained with logistic
team who selected concepts from the ODP hierarchy based orregression using an L2 regularizer.
their familiaity with the conceptWhile some members of the Figure 5 show the resultérom this experimentWe see that
team qualify as ML experts, that knowledge did not give them any within a few hours of work (8 hours) and a few hundred labels,
specific advantages. Indeed, the best classifiers were not built byteaches are able to create classifiersing ICE(orange and blue
ML experts. The concepts selected werdiome/Cooking, curves for dictionary and BOMéatures, respectivélyhat match
Science/Math, and Games/Video GamesThe groundtruth traditionally built classifierggray curve) especially in the high
numberof positives for each of these categories ranged & precision region of theprecision/recall R/R) curve. Table 1,
to 8% of the entire corpusnd were equally represented in the summarizes these resylshowing that participants were able to
train and test sets (8% for Home/Cooking, 6.5% for Science/Math createclassifiers in afew hours with a very small number of
and 1.7% for Games/Vidgbames). labels pn the order ofl00s) and a small number dfctionary
We requiredparticipantsto start from scratch and use ICE to features 0-70 compared to ~3Q000 labels and 1000 features
interactively build a web-page classiér for their selected usingthe standard BOW modelin addition, reducing the number
conceps via , & (finteractive MLprocess described in Section 2 of labels and usingeachersupplied conceptual dictionaries both
Teaches were notshownthe true ODP labels for this exercise. contributeto the simplicity and interpretability athe models.
Teaches created dictionary features based on what they deemedWhereasICE classifiers built in a few hours giteaches a quick
important for predicting their categorieor example one way to get several weak classifiers, the result also shows that the
participantcreated dictionaries ofingredients, tensils, and ICE labels with BOW features outperforms ICE classifiers built
measurementdor theHome/@oking classifier. with ICE labels and dictionary features. In some of these cases,
When participantswere dongwe analyzedtheir sessions to the dictionaries built byteaches were either noisy or
compute the total time taken,the number of labelsaand features incompletely capture the intended concept (¢hg classifier built
provided, and the resulting classifier performance We also for Video Games missed a humber of positive pages talking about
computel these metrics for a classifigrained usingthe same 3SFODQV® VLQFH WKH WHDFKHU GLG QRW NQ
labels, but after replacing theachersupplied dictionaries witla group of people playing Video Gamesn the next section we
standardbagof-words (BOW) featureset consisting of the top discuss some of these issues and briefly describe our ongoing

10,000 ngrams from the Google Webgrams and weighted by reseach on improving the performance of ICE features.
TF-IDF. We compareW K H&WBEHO3D E &la@sifiers to a baseline

32'3 O D EHsSifier trained usingll of the ODPgroundtruth

"% & 5.2 Distributed Systems for ML

V& | ™ & |0& | ™ & |')& ™ & Distributed systems for machine learning commonly refers to

- #$&/0123%4 | 6.87 NA 5.42 NA 2.64 | NA
soneaTas®6 | 767 230398 | 588 330358 | 406 | 330358 parallel learning algorithen designed to carry the training

521685 23598 68 10,000 e 10000 | 32 10,000 optimization over large datasets, e.g. megluce for expectatn
<$="09& ":& >4 90% | 93% 31% | 50% 3% | 82% maximization [5] or parallel asynchronous stochastic gradient
, 3%=.%.8A [14]. Our application is different. Training is typically inexpensive
Table 1: Table summarizing the labels and features used and performed on a single machivecauséCE's training sets are
in ICE classifiersvs.a standard BOW model limited to the labels produced by one user over an interactive
session. Our challenge resides in model scoring. The intezactiv
4.2 Deployment loop frequently produces new modedsd werequirethe system

to computequickly model outputs over large datasets for active
sampling. Our computational requirement is therefore similar to
the one driving the design of SpajR3], a cluster computing
system for interactive data analysis as discussed in Section 3.

The ICE tool is being used by several customers from
Microsoft business units with thfeinctionality mentioned above
(interactive labeling, featuring, sampling, and reviewing) to build
classifiers and entity extractor§everal of the customers are non
machine learning experts and the classifiers they have created . Discussion and Future Work
with ICE have been deplogein commercial applications. An High performing tassifiers and extractors on lopsided
example of this is the use of ICE in the live Cortana senki&re 5 oh1ems arémportant. The traditional approach to create them is
we apply ICE to build classifiers for the social conversation ;. qfficient and requires hat-comeby (and expensive) ML
domain where a domain expert in the Cortana team (non maChineexpertise. To improve on cosheed, and expertise requirements,

learning expert) developed agh precision binary classifier in we turned to interactive learnin : :
.) g amdilt an environmentthat
135 minutes to detect the COMPLIMENT intent, for utterances gnaplegeachers to quickly interact with data at scale with ML in

VXFK DV 3&RUWD QD SodrXcobvdrsiatidt il Brid/ 6f the loop.

several customers of a system like ICE. Other applications rperesyitingplatform, ICE,is being used for two purposes: to
include web search, email classtfion and telemetry. allows ordinary people to build ML models over big data from
scratch and in a few hograndto enable researchers to explore
5. Related Work j[he challenges_ of interactive learninghe paper presents the
; important choiceswe made to create an interactive ML
architectureand some resultsve obtainedfrom non-expert early
adoptes.
The architecture ofCE is very similar to the architecture of
Spark. This is remarkable becaueE was designedpecifically

ICE builds upon recent advances in interactive machine
learning and distributed systems. The following presents work
relevant to ICE.

5.1 Interactive Machine Learning for interactive learning and Spark was designed with a more
Different fields have independently introduced systehe general ML platform in mind. The two designs share a large
iterate through labeling, model refinement and output updates distributed immutable kmemory column store. Spark
an interactive waySuch systems can target Achnical users. implements an imemay version ofMap-Reduce. ICE supports

For example relevance feedback mechanisms in Information a limited version ofMap-Reduce without GroupBy which
Retrieval is one of the earliest form of interactive learning permis every column of a given rowo reside on the same
[17][18]: in a retrieval scenario, the user receives a documentmachineand reduces the int@uster communication ICE uses
rankingfrom aninitial query and marks some of tdecuments in this property to implemera highly optimizedinstance ofMap-
that rankingas relevant or nerelevant. The system then takes Reducededicated tdfiltering by score(for active labeling and
this feedback into accourtb compute a new ranking. Similar ~ exploration) The ICE magreduce is available to enginser
mechanisms have also been proposed for recommender systenfuilding the datasetbut not tothe teachers. A low priority Map
[1][16]. In these cases, the end goal is not to produce a model buis available taheteacher for omputing new featuresn the large
rather to assistjuickly the user to find a small set of relevant dataset (computing features on labeled sets remains very fast)
items. These policies are in place to ensure that all available computation
The idea of interactive model building grew with the field of power is used to minimiz& KH UHVSRQVH WLPH IURP \
active learning[19]. Active learning studies &ning algorithms point of view. Despite tlese differences, it is possible that Spark
and sampling strategies to learn madby actively querying or a similar platform could be used £ in future iterations.
human labelers. It aims at understanding the impact of biased Classifiers built in a few hoursy norrexpers usingthe ICE
sampling on generalization performance and proposing practicalperform reasonably well compared to the state of the art. Our
solutions with theoretical convergence guarantedseofetical ultimate goal, howeveis to enableanyoneto build modelsn a
works percolated to practical applications. Interactive training has very short timethat perform as well or outperform models bbijt
been applied to computer vision tasks such as image segmentatioML expertsvia traditional means.
[8], image classifiation [10], or gesture classificatiof9]. Once the paradigm of interactive ML is adopted, we can think
Interactive learning haslsm been applied to text classification of many directions of research to improve the legree teacher,
tasks[11]. In particular, different formof interactive featuring andor their interaction. For instance, momising approachthat
have been explored over text dgH6][20]. does allthreeis to enrich the featurgnguage used by the teacher
ICE differs from prior work by its generality as it can be to tell the model what to observereliminary results indicate that
applied to different data types (e.g. wgages, raw text or ~ we can extend the ussupplied didbnary features (for text
images) and ML tasks (e.g. classification or segmentation). It alsodomains) beyond literal string match to create significantly more
differs by the dataset size it can manipulate. To our knowledge, powerful and informative features. Consider, for example, a
ICE is the only active learning system that ensteilding dictionary feature that contains the abbreviations for the US
models @er 100 million items with interactive speed. VWDWHYVY ZKHUHDV WKH 86VHWIDKDKE WERHPERQC

literal string match will result in the feature being on for every Proceedings of the SIGCHI Conference on Humactéta
LQVWDQFH RI 3LQ" ,QGLDQD DQG 3RU’" 2 unl€dRpQting SysterGHI 20110ACNIHIAAL58/ R
diminish the utility of the feature. As an alternative, we are using [10] Fogarty, J., Tan, D., Kapoor, A., and Windor, S. 2008.

the entries in each dictionary twild automatically (i.e., from CueFlik: Interactive Concept Learning in Image Search. In
unlabeled data) a commortontext model that identifies Proceedings of the SIGCHI Conference on Human Factors
surrounding string contexts where multiple dictionary entries have in Computing System€HI 2008. ACM,29-38.

high probability of appearing; by shifting from literal strings to [11] Godbole, S., Harpale, A., Sarawagi & 1dChakrabarti, S.

context models, the dictionary feaes can match strings not 'RFXPHQW FODVVL{FDWLRQ WKURXJK
explicitly given (e.g., common misspellings) and can-natch supervision of document and term labetsProceedings of

RQ VWULQJV H[SOLFLWO\ JLYHQ H J ZKHQ&®OL@.'LY QRW XVHG DV D VWDWH
abbreviation)On the few classification examples we investigated, [12] Kapoor, A., Lee, B., Tan, D., and Horvitz, E. 2010.

tKHVH 3FRQFHS Whavé&prévev kR @ Odd kupstior to Interactive Opimization for Steering Machine Classification.
SOLWHUDO ™ GL FMWéyahyneddHew viioktE © Mefihe a In Proceedings of the SIGCHI Conference on Human
common context (efficientthey are not blind when none of the Factors in Computing Systen@H| 2010. ACM, 13431352.
words in the dictionargppeain the documentbetter recall), and [13] Lai, T. L. and Robbins, H. 1985. Asymptotically Efficient
they seldom fire in therrong context (better precision). Adaptive Allocation RulesAdvances in Applied

Another promising research direction is to provide tools to Mathematics6:4-22.
HQKDQFH WKH WHDFKHUYV DELOLW\ W R4 Bngfefds D BiddaWALIRQd Zinkévich, RMY. W.[3QwW H
different metris (in exotic feature space) or external information learners are fasin Proceedings of Neural Information
sources likea click graphfrom a search engingonnecting query Processing Systen(NIPS)
nodes to document nodesdn be used to suggest positives for [15] Manning, C., Raghavan P., Schutze, &h|ntroduction to
queries or for web pages. Information RetrievalCambridge Univesity Press, 2009.

[16] Montaner, M., Lopez, B., de la Rosa, J.L. 2083Faxonomy
for Recommender Agents on the Interrfgatificial

7. REFERENCES Intelligence Review 1285330.

[1] Adomavicius, G. and Tuzhilin, A. 2005. Towards the Next [17] Rocchio, J. 1971. Relevance Feedback Information Retrieval.
Generation of Recommender Systems: A Survey of the-State In The SMART Retrieval System: Expents in Automatic
of-the-Art and Possible Extension&EE Transactions on Document Processing. Salton, Ed. Prentiedall,

Knowledge and Data Engineering,1§, 734749. Englewood Cliffs, NJ, 31-323.

[2] Attenberg, J., Melville, P., and Provost,20810. [18] Salton, G. and Buckley, C. 1990. Improving Retrieval
A Unified Approach to Active Dual Supervision for Labeling Performance by Relevance Feedbaddurnal of the
Features and Examples. 20BP0oceedings othe European American Society of Information Science 288297.
Conference on Machine Learning (ECMD). [19] Settles, B2012 Active LearningMorgan & Claypool

[3] CesaBianchi, N. and Lugosi, G. 200Brediction, learning, [20] Settles, B. 2011. Closing the Loop: Fast, Interactive Semi
and gamesCambridge University Press. Supervised Annotatiowith Queries on Features and

[4] Chaiken, R., Jenkins, B., Larson;®, Ramsey, B., Shakib, Instancesln Proceedings of Empirical Methods in Natural
D., Weaver, S. and Zhou, J., SCOPE: Easy Efficient Language Processing (EMNLP)

Parallel Processing of Massive Data SBteceedings of [21] Azari Soufian, H., Chickering, D., Charles, D., and Parkes,
VLDB, 1(2), 2008, 1265276. D. 2014. Approximating the Shapely Value via Mu#isue

[5] ChengTao Chu, Sang Kyun Kim, YAn Lin, YuanYuan Yu, Decompositionsin Proceedings of the ¥3anternational
Gary Bradski, Andrew Y. Ng, Kunle Olukotun Mdeduce Conference on Autonomous Agents and Multiagent Systems
for Machine Learning on Multicor006.In Proceedings of (AAMAS 2014).

Neural Information Processing Syste(hdPS) [22] Talbot, J.Lee, B., Kapoor, A., and Tan, D.S. 2009.

[6] Druck G. and A. McCallum A. 2011. Toward interactive Ensemble Matrix: Interactive Visualization to Support
training and evaluatiorRroceedings of the ACM Conference Machine Learning with Multiple Classifiers. Rroceedings
RQ ,QIRUPDWLRQ .QRZOHGJH 0DQDJPH Q ¥ th&SI®JHI Conference on Human Factors in Computing

[7] Dean, J. and Ghemawat,Z004.MapRedue: Simplified SystemsCHI 2009. ACM, 12831292.

Data Processing on Large Clust&sth Symposium on [23] Zaharia, M, Chowdhury, M., Franklin, M., Shenker, S. and
2SHUDWLQJ 6\VWHP "HVLJQ DQG, ,PSOH P BtQid4, D VBpakQCludter Chmputing with Working Seté, 2
137-150. USENIX Workshop on Hot Topics in Cloud Computing

[8] Fails, J.A. andlsen Jr., D.R. 2003. Interactive Machine +RW&ORXGY

Learning. InProceedings of the International Conference on
Intelligent User InterfacegUl 2003 ACM, 39-45.

[9] Fiebrink, R., Cook, P.R., and Trueman, D. 2011. Human
Model Evaluation in Interactive Supervised Learning. In

[24] zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J.,
McCauley, M., FranklinM., Shenker, S., Stoica, Resilient
distributed datasets: a fadtilerant abstraction for in
memory cluster computin@" USENIX Symposium on
Networked Systems Design and Implementafioh?2.

