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Abstract

This work connects language model adap-
tation with concepts of machine learning
theory. We consider a training setup with
a large out-of-domain set and a small in-
domain set. We derive how the bene-
fit of training a model on either set de-
pends on the size of the sets and the dis-
tance between their underlying distribu-
tion. We also present how adaptation tech-
nique based on data selection such as im-
portance sampling, intelligent data selec-
tion and influence functions, can be pre-
sented in a common framework which high-
lights their similarity and also their subtle
differences.

1 Introduction

Neural language models (LMs) are central
to modern language processing (Bommasani
et al., 2021), either as standalone models
(e.g. speech recognition, machine transla-
tion, summarization) or to provide initializa-
tion to other models (e.g sentiment analysis,
question answering, parsing). Models trained
over large generic training sets – over a bil-
lion sentence (Kaplan et al., 2020; Roziewski
and Koz lowski, 2021) – have shown to be effec-
tive, especially when adapted to the targeted
application domain. Adaptation takes into ac-
count that the training set for most targeted
domains are orders of magnitude smaller than
generic sets. Neural LM adaptation is com-
monly performed via fine tuning (Devlin et al.,
2018; Liu et al., 2019; Raffel et al., 2019; Rad-
ford et al., 2019), data selection (van der Wees
et al., 2017) or their combination (Wang et al.,
2018; Aharoni and Goldberg, 2020; Gururan-
gan et al., 2020).

It has been observed that the out-of-domain
pre-training set size is a factor of success (Raf-
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fel et al., 2019; Devlin et al., 2018). Also it has
been mentioned that adaptation is more ef-
fective on domains which are well represented
in the the pre-training data (Radford et al.,
2019). In this paper, we connect language
model adaptation with concepts of machine
learning theory. We consider a training setup
with a large out-of-domain set and a small in-
domain set. As a first contribution, we de-
rive how the benefit of training a model on
either set depends on the size of the sets and
the distance between their underlying distri-
bution. We also expose how fine-tuning can
be viewed as regularization methods that can
achieve a better trade-off than training only
on either set.

The research on data selection for language
model adaption originates mainly from intel-
ligent selection (Moore and Lewis, 2010; Ax-
elrod et al., 2011). This method favors train-
ing data deemed more likely by an in-domain
model than by an out-of-domain model. This
method is intuitive and is effective for neu-
ral LM adaptation (van der Wees et al., 2017;
Wang et al., 2018). However, this method
connection with statistical estimation is un-
clear, which makes studying its impact on gen-
eralization error difficult. Another family of
selection methods stem from influence func-
tions (Koh and Liang, 2017; Wang et al., 2021)
which estimates if the model updates from out-
of-domain training examples are aligned with
the in-domain updates. This method is more
principled and its impact on the generalization
error easier to study. In this work, as a second
contribution, we show how intelligent selection
and importance sampling methods are linked
in the case of neural LMs. In particular, we
show that they both can be derived from im-
portance sampling (Owen, 2013), a classical,
well-studied statistical estimation technique.



This paper first introduces language mod-
els and studies the trade-offs of in-domain and
out-of-domain training. It then present LM
fine-tuning as a regularization method before
drawing the link between data selection tech-
niques.

2 Neural Language Modeling

Language modeling refers to the generative
modeling of natural language (Manning and
Schutze, 1999). Commonly, natural language
is represented as a sequence of symbols, to-
kens, from a finite vocabulary. For instance,
language can be represented as a sequence of
characters, a sequence of words or alternative
units. A neural language model (LM) decom-
poses the estimates the log probability of a
text y = (y1, . . . yn), as

logP (y; θ) =

n∑
i=1

logP (yi|yi−1
1 ; θ)

where Pθ maps a parameter vector θ along
with a sequence of past tokens yi−1

1 onto a
probability distribution over the vocabulary.
Different types of neural architectures have
been used for neural language modeling. Most
architectures used for language models re-use
intermediate computations from the previous
steps for the next steps when estimating prob-
abilities for successive tokens in the same se-
quence. Popular architectures include recur-
rent neural networks (Mikolov et al., 2010;
Sundermeyer et al., 2012), convolutional net-
works (Dauphin et al., 2017) and transformer
networks (Vaswani et al., 2017; Radford et al.,
2019).

The parameter vector θ ∈ Θ of a neural lan-
guage model is identified by maximizing the
log likelihood over a training set D sampled
from the true distribution D using variants of
stochastic gradient descent. The log likelihood
of a held-out set, sampled from the same dis-
tribution, is commonly used to evaluate model
quality. It is common to report the exponenti-
ated negative average log likelihood per token,
called perplexity.

Conditional LMs model the conditional dis-
tribution of a text y given a conditioning input
x.

logP (y|x; θ) =
n∑
i=1

logP (yi|yi−1
1 , x; θ)

This type of model is used for translation
where (x, y) pairs are sentences in the source
and target language (Koehn, 2009; Bahdanau
et al., 2015) or summarization where (x, y)
pairs are corresponding articles and sum-
maries (See et al., 2017).

For both conditional and regular LMs, the
size of the training data is an important factor
to achieve a low held-out perplexity. This is
an obstacle for domains where training data
is available only in limited quantity. This is-
sue has led to various solutions in the model
adaptation literature. These methods leverage
large amount of generic training data D along
with a small amount of target domain train-
ing data T from the domain of interest. Fine
tuning is a popular domain adaptation method
which trains a neural language model in two
phases, first maximizing the likelihood of the
generic set D (pre-training) before optimizing
the likelihood of the target domain set T (fine-
tuning). As an alternative to fine-tuning, some
methods consider leveraging the small target-
domain training set to identify and emphasize
similar data in the larger generic training set.
These emphasis methods can be used individ-
ually or in conjunction with fine-tuning.

Emphasis methods include importance sam-
pling, contrastive data selection and influence
functions. This paper shows that these meth-
ods – although proposed in different context
– can be presented in a unified way which al-
lows casting light on their subtle differences.
Moreover, we show that using these methods
in conjunction with fine-tuning require consid-
ering multiple types of over-fitting risks.

3 In-Domain Training

This section decomposes the generalization
loss of language models when the training and
test data are sampled from the same distri-
bution. This decomposition relies on classical
concepts from learning theory and will help us
study the domain adaptation setup in the next
sections.

To train a language model over a training
set D sampled from a distribution D, one typ-
ically minimizes the negative log-likelihood of



D, also referred to as the cross-entropy loss i.e.

L(θ;D) = − 1

|D|
∑
y∈D

logP (y|θ)

= E
y∼D

[− logP (y|θ)].

This empirical risk is an expectation over the
finite set D, which acts as a proxy for the ex-
pectation over the true, unavailable distribu-
tion P (y;D),

L(θ;D) = −
∑
y∈Ω

logP (y|θ)P (y|D)

= E
y∼D

[− logP (y|θ)].

The true expected loss is bounded by the en-
tropy of the distribution P (·|D), i.e.

L(θ;D) ≥ LH(D) = H(P (·|D))

since H(P (·|D)) = minq Ey∼D[− log q(y)]. The
gap between the best likelihood from a neural
network with the chosen parameterization and
the entropy is called the approximation error

Lapp(D,Θ) = min
θ∈Θ
L(θ;D)−H(P (·|D)).

This gap accounts for the fact that P (·|D) gen-
erally cannot be represented by a parameter-
ized function from the chosen family spanned
by Θ. In addition to the approximation er-
ror, one should consider the estimation error
to account for the fact that one relies on the
empirical risk from the finite set D,

Lest(D,Θ, D) = L(θD;D)−min
θ
L(θ;D)

with θD = arg minθ∈Θ L(θ;D). Therefore, the
loss of θD over D decomposes as (Bottou and
Bousquet, 2007)

L(θD;D) =

LH(D) + Lapp(D,Θ) + Lest(D,Θ, D) (1)

where the three terms accounts for the intrin-
sic uncertainty of D, the chosen neural archi-
tecture and the finite training set D respec-
tively.

The approximation error Lapp(D,Θ) de-
pends on the selected model family Θ. It
can be reduced by selecting a more expres-
sive family, i.e. a neural architecture with

more capacity, a larger Θ, e.g. architectures
with more, wider layers. The estimation er-
ror Lest(D,Θ, D) depends both on the selected
model family Θ and the size of the training
data D. Increasing model capacity will result
in a higher estimation error for the same train-
ing set size, but training over a larger training
set will decrease estimation error. Therefore,
for a given training set size, capacity needs to
be chosen to identify a good trade-off between
the two error types.

Two important properties of neural net-
works need to be kept in mind when examin-
ing this trade-offs. The universal approxima-
tion property (Lecun, 1987; Funahashi, 1989)
means that for any approximation error ε and
any distribution D, there exists a capacity set-
ting C(ε,D) at which a neural network θ ∈
C(ε,D) whose error is below ε, i.e.

∀ε > 0, ∃ C s.t. Lapp(D, C) ≤ ε.

In layman terms, the universal approximation
property means that for sufficiently large ca-
pacity settings, the approximation error can
become arbitrary low. The statistical consis-
tency property means that for any ε, ε′ > 0,
there exist a training set size N(ε,D) such that
sampling a training set of size N(ε, ε′,D) from
D will result in an estimation error less than
ε′ with probability 1− ε,

∀ε, ε′ > 0,∃ N s.t

P (D ∼ DN : Lest(D,Θ, D) < ε′) = 1− ε

In layman terms, the statistical consistency
property means that for sufficiently large
training sets, the probability to get an estima-
tion error below any positive value can become
arbitrary close to 1.

Universal approximation and consistency
implies that, in the asymptotic case (i.e. as the
size of D tends to infinity), the last two terms
in Eq 1 can be arbitrary close to zero with the
appropriate model capacity (with high proba-
bility). In that case, the likelihood L(θD;D)
amount to the intrinsic entropy of D with the
appropriate model capacity.

4 Out-of-Domain Training

This section considers a setup where one needs
a specialized language model in a domain T



and two training sets are available: a small
training set T sampled from T and a large
training set D sampled from D, a generic do-
main different from the specialized domain.

In that context, the simplest options are ei-
ther to train a model over T or D alone. Train-
ing only on the small set T results in the gen-
eralization loss

L(θT ; T ) = LH(T )+Lapp(T ,Θ)+Lest(T ,Θ, T )

with θT = arg minθ∈Θ L(θ;T ) as in the pre-
vious section. Training on the larger set D
results in

L(θD; T ) = LH(T )+Lapp(T ,Θ)+Lest(T ,Θ, D).

Two factors are important to compare these
two options: the size of the specialized set T
relative to the size of the generic set D and the
similarity between T and D distributions.

When the T and D distributions are identi-
cal, D and T are sampled from the same dis-
tribution and training a model on the larger
training set D is advantageous. For a constant
capacity, this option will get a lower estima-
tion error. When varying capacity, one might
identify a setting with an even better trade-off
in the compound loss with the larger training
set D.

When the distributions T and D differ and
the size of D is fixed, the size of T deter-
mines which option to prefer. Statistical con-
sistency means that Lest(T ,Θ, T ) will con-
verge to zero in probability as the size of T
grows. This means that when the size of T is
greater than N(ε,Lest(T ,Θ, D),D), the prob-
ability that training on T results in a better
generalization loss than training on D is above
1− ε.
Theorem 1 When the distributions T and D
differ, the Kullback–Leibler (KL) divergence
between the two distributions is considered.
We show that the generalization of the loss
of θD over T is upper bounded

∀ε > 0, ∃N s.t. ∀D ∼ Dn,
L(θD; T ) ≤ H(T ) +KL(T ,D) + ε (2)

with probability 1 − ε. This bound justifies
the intuition that if given the choice between
two generic domains D and D′, training over
the one with the lowest KL divergence to T

will result in a better asymptotic behaviour.
The proof of this bound is presented in Ap-
pendix A.

5 Fine-Tuning

Fine-tuning for domain adaptation trains a
model on a small in-domain set initializing
optimization from the parameters of a model
trained on a large out-of-domain set. For-
mally, fine-tuning minimizes L(θ;T ) the loss
over T for a few steps, starting the optimiza-
tion from θD = arg minθ∈Θ L(θ;D). This
strategy implicitly targets a trade-off between
the empirical losses over T and D. This trade-
off is controlled by the number of fine tuning
steps nft. Few steps means that the identi-
fied parameters θft achieve a low loss over D,
while many steps expresses that the parame-
ters achieve a low loss over T . This strategy
leverage the regularization effect of early stop-
ping (Caruana et al., 2001), i.e. the solution
found by gradient descent is guaranteed to be
in an Euclidean ball centered around the ini-
tialization whose radius grows with the num-
ber of steps (Grangier and Bengio, 2008), i.e.

‖θft − θD‖2 ≤ λ nft gmax

where λ refers to the (maximum) learning
rate and gmax to an upper bound on the
update norm, which is commonly set to 1
for transformers trained with gradient clip-
ping (Vaswani et al., 2018). The small dis-
tance between θft and θD guarantees that the
loss L(θft;D) is close to the optimum L(θD;D)
when θ → L(θ;D) is a smooth function, e.g. a
Lipschitz function.

For the basic fine-tuning setup, several
variants have been introduced. Some ap-
proaches (Devlin et al., 2018; Liu et al., 2019;
Raffel et al., 2019) consider leaving some pa-
rameters un-tuned or frozen which is the ex-
treme case of regularization for these weights,
penalizing any deviation from initialization.
Other approaches consider introducing novel
(unregularized) weights for fine tuning, often
referred as adapter layers (Houlsby et al., 2019;
Stickland et al., 2019; Pfeiffer et al., 2020).
Other form of regularization such as dropout
have also been considered in conjunction with
fine tuning (Miceli Barone et al., 2017).



The selection of the regularization strength
in fine-tuning is efficient since it iteratively vis-
its an optimization path from the most regu-
larized model (θD trained only on D, Sec. 4)
to the unregularized θT (Sec. 3). This is
more efficient compared to explicit regular-
ization methods, including multitask learn-
ing (Caruana, 1998; Collobert and Weston,
2008; Pilault et al., 2021), i.e. optimizing
Lmulti(θ;T,D, α) = L(θ;T ) + αL(θ;D).

6 Data Selection

The generalization error of a language model
trained over a generic training set D sampled
from D depends on the test data distribution.
Its generalization over another specialized do-
main T is tied to the KL divergence between
T and D, see Eq. (4). When this KL diver-
gence is large but out-of-domain data is abun-
dant, data selection methods propose to select
a subset DT ⊂ D. Ideally, the training loss
over such a subset L(θ,DT ) would be a bet-
ter proxy for the generalization loss over T ,
L(θ, T ), than the initial training loss over D,
L(θ,D).

Data selection is attractive since it replaces
the training set with another set closer to the
test domain. At the same time, this training
set is smaller, which increases the impact of
estimation errors. Additionally, data selection
is imperfect since the target domain distribu-
tion T is only known through a small target
training set T .

This section connects importance sampling,
contrastive data selection and influence fil-
tering, alternative selection techniques intro-
duced independently.

6.1 Importance Sampling

Although selecting data from the generic
training set is more common (Moore and
Lewis, 2010; Wang et al., 2018) than re-
weighting and re-sampling, we first examine
importance sampling, a re-weighting and re-
sampling technique. This section will guide
our understanding of other selection methods
later.

Importance sampling is a generic statistical
technique (Owen, 2013). In our case, it can be
used to estimate the expectation of the cross-
entropy loss over T while having access to sam-

ples from D. It relies on the identity

L(θ; T ) = E
y∼T

[− logP (y|θ)]

= −
∑
y∈Ω

logP (y|θ)P (y|T )

= −
∑
y∈Ω

logP (y|θ)P (y|T )

P (y|D)
P (y|D)

= E
y∼D

[−w(y; T ,D) logP (y|θ)]

where w(y; T ,D) = P (y|T )
P (y|D) , assuming full sup-

port on D, i.e. ∀y ∈ Ω, P (y|D) > 0. In prac-
tice, one has not access to T and D but to fi-
nite samples T and D. With importance sam-
pling, we can consider two alternative estima-
tors of L(θ; T ), either the empirical risk over
T ,

L(θ;T ) = − 1

|T |
∑
y∈T

logP (y|θ)

or the mean of the importance weighted cross
entropy over D, i.e.

Limp(θ;D,T, ŵ) = −
1

|D|
∑
y∈D

ŵ(y; T ,D) logP (y|θ)

where ŵ estimates of the weights w from the
training sets D and T . The trade-off between
these two estimators of the generalization loss
over T depends on multiple factors: the rel-
ative size of T and D, the imbalance of the
weights w and the quality of their estimate ŵ.

Importance sampling is interesting when
the generalization error L(θimp(D,T ); T ) of the
model

θimp(D,T ) = arg min
θ
Limp(θ;D,T, ŵ)

is less than the generalization error of θT se-
lected by minimizing L(θ;T ), i.e. classical em-
pirical risk minimization. This error decom-
poses as,

L(θimp(D,T ); T ) =

LH(T ) + Lapp(T ,Θ) + Limp
est (T ,Θ, D, T ).

We further decompose the estimation error in
two terms,

Limp
est (T ,Θ, D, T ) =

Lest/w(T ,D,Θ, D) + Lest/ŵ(T ,Θ, D, T )



where Lest/w(T ,D,Θ, D) refers to the esti-
mation error resulting from the finite size
of D, assuming access to the true impor-
tance weights, and Lest/ŵ(T ,Θ, D, T ) isolate
the residual error resulting from the estima-
tion of w. We have

Lest/w(T ,D,Θ, D) =

L(θimp(D,D);D)−min
θ
L(θ; T )

and

Lest/ŵ(T ,Θ, D, T ) =

L(θimp(D,T );D)− L(θimp(D,T );D)

with θimp(D,D) = arg minθ Limp(θ;D,T, ŵ)
The first term depends on the size of D and

the imbalance of weights. For instance, if the
weights are mostly concentrated over a small
subset of D, this estimation error will be high.
If this subset is smaller than T , estimation er-
rors from Limp(θ;D,T, ŵ) will be higher than
from L(θ;T ). The notion of effective sam-
ple size has been defined to quantify this ef-
fect (Kish, 1965). It is define by examining
the variance of the weighted sum of n inde-
pendent random variables Zi with mean µZ
and variance σ2

Z , Sw =
∑
i wiZi∑
i wi

. This variance

is

σ2
Sw =

∑
iw

2
i

(
∑

iw)2
σ2
Z

which can be compared to σ2
S = 1

nσ
2
Z in the un-

weighted case. This means that the weighted
sum variance matches the variance of an un-
weighted case with

ne =
(
∑

iw)2∑
iw

2
i

.

Assuming that losses over D and T have com-
parable means and variances, the expected loss
estimate with importance weighting over D
has lower variance than the mean over T only
when,

ne =
(w)2

w2
|D| � |T |

where w = 1
|D|
∑

y∈D w(y) and w2 =
1
|D|
∑

y∈D w
2(y) are the sample mean and vari-

ance of the weights over D. This means
that the first term in the estimation error is
Lest/w(T ,Θ, D, T ) advantageous compared to

the estimation error from classical empirical
risk minimization over T when T is small. In
this case, importance sampling seems attrac-
tive for small specialized sets.

Unfortunately, the second estimation er-
ror term Lest/ŵ(T ,Θ, D, T ) gets larger as T
gets smaller since estimating the importance
weights w(y; T ,D) = P (y|T )

P (y|D) from data is chal-
lenging when T is small. One can remark that
language modeling is actually the very prob-
lem of estimating the probabilities from this
ratio P (y|T ), P (y|D) given finite samples from
T ,D. Discriminative classifiers are also rele-
vant to estimate this ratio since

w(y; T ,D) ∝ P (T |y)

P (D|y)
.

In fact the multiplying constant (prior ratio)
does not matter since multiplying the weighted
loss by a positive constant has no impact on
optimization.

When importance weights are estimated
with a language model, one can estimate
P (·|T ) by fine tuning on T a model pre-trained
on D. The number of tuning steps nft gives
controls on ‖θft − θD‖. When nft = 0, ŵ = 1
and the importance sampling loss corresponds
to L(θ,D). As nft grows, the estimate P (y|θft)
could overfit and assigns most of the proba-
bility mass to a small neighborhood around
samples in T . The weights ŵ will in turn
be concentrated in this small neighborhood,
making the minimizer of the importance sam-
pling loss close to the minimizer of the em-
pirical loss over T . Therefore, fine-tuning a
language model for estimating the importance
weights allow to progressively transition be-
tween the in-domain and the out-of-domain
empirical loss minimizers seen in Section 4. In
the next sections, we refer to the estimated
importance sampling weights as

wimp
D,T (y) = ŵ(y;T,D).

Importance sampling has been used for model
training for various application: either to im-
prove training speed (Johnson and Guestrin,
2018; Katharopoulos and Fleuret, 2018) or
to adapt to a changing training distribu-
tion (Mahmood et al., 2014; Metelli et al.,
2018). Importance sampling has rarely been
used to modify the training distribution of lan-
guage models (Foster et al., 2010; Fernandez



and Downey, 2018) and intelligent selection
methods are more common.

6.2 Intelligent Selection

Intelligent selection (Moore and Lewis,
2010; Axelrod et al., 2011) and contrastive
data selection, its extension to neural net-
works (van der Wees et al., 2017; Wang et al.,
2018), have been introduced in the language
modeling literature. We show that these
methods are closely related to importance
sampling, even if their original papers does
not mention this link.

Intelligent selection selects training samples
from an out-of-domain dataset according to
the log-odd between an in-domain language
model and an out-of-domain language model.
Typically, a binary decision is taken per sen-
tence by comparing the average log-odd to a
threshold τ ,

LIntSel(θ,D, T ) = −
∑
y∈D

bIntSel
D,T (y) logP (y|θ)

where bIntSel
D,T (y) is defined as

I {logP (y|θT )− logP (y|θD) > τ}. Com-
pared to importance sampling, the weights
are binarized, i.e.

bIntSel
D,T (y) = I

{
logwimp

D,T (y) > τ
}
.

The binarization decision was certainly driven
by convenience as most n-gram language mod-
els training packages did not support weighted
likelihood optimization when intelligent selec-
tion was introduced. Binarization also has the
advantage of down-weighting extreme positive
weight values from large logP (y|θT ) due to
over-fitting on the small set T .

More recently, intelligent selection has been
extended to neural models (van der Wees
et al., 2017; Wang et al., 2018). Contrastive
data selection (Wang et al., 2018) suggests
to fine tune the in-domain model logP (y|θT )
from logP (y|θD) and also observes that selec-
tion scores can efficiently be estimated from
a model with a much smaller capacity than
the final trained model. Dynamic selec-
tion (van der Wees et al., 2017) proposes to
increase the selection threshold τt as train-
ing progresses, gradually transitioning from
generic to in-domain training. This gradual

adaptation of neural network is related to cur-
riculum learning (Bengio et al., 2009) which
studies the ordering of examples and tasks
during model training.

Intelligent selection methods have been ap-
plied both for unconditional models (language
modeling) and conditional models (machine
translation). In the conditional case, intelli-
gent selection computes

bIntSel
D,T (x, y) = I

{
logwIntSel

D,T (x, y) > τ
}

with wIntSel
D,T (x, y) =

P (y|x, θT )

P (y|x, θD)
.

This ratio of conditional probabilities is differ-
ent from the ratio of join probabilities stem-
ming from importance sampling, i.e.

Limp(θ;D,T, ŵ) =

− 1

|D|
∑
y∈D

P (x, y|T )

P (x, y|D)
logP (y|x, θ).

The two ratio matches when P (x|T ) = P (x|D)
since

wimp
D,T (x, y) =

P (x, y|T )

P (x, y|D)

=
P (x|T )

P (x|D)
wIntSel
D,T (x, y).

The formulation of intelligent selection there-
fore neglects the domain mismatch from the
input distribution in the conditional case.
This formulation aligns with the denoising
goal (Wang et al., 2018) which assumes that
D contains label noise, i.e. mistranslation in
that case.

6.3 Influence Functions

As mentioned above, importance sampling
and intelligent selection weights can be es-
timated by contrasting the log probabilities
from a base model with those from a fine-
tuned model. This use of fine-tuning con-
nects intelligent selection to influence function
and gradient alignment techniques. Influence
functions (Koh and Liang, 2017; Pruthi et al.,
2020) have been used as a diagnostic tool to
identify the training instances which support
or contradict with a given test label. This task
is related to the selection of training data when



the objective is to find instances in a generic
training set D whose training updates increase
the likelihood of a set T from a different do-
main.

The influence of a training point y on a test
point y′ is defined as

I(y, y′) = −∂`
∂θ

(y′; θ)>H−1 ∂`

∂θ
(y; θ)

where `(y, θ) refers to the loss at y for a model
with parameters θ and Hθ refers to the Hessian
of the model loss at θ. This quantity can be
derived by considering the impact of reducing
the weight of point y during training on the
test loss at y′. If we increase the weight of a
training example by ε,

θD,ε = min
θ

1

|D|
∑
z∈D

`(z; θ) + ε`(y; θ)

From (Cook and Weisberg, 1982), we derive

∂θD,ε
∂ε

∣∣∣∣
ε=0

= −H−1 ∂`

∂θ
(y; θ)

∣∣∣∣
θ=θD

.

Composing with the test loss on x’,y’, we get

∂`(y′; θD,ε)

∂ε

∣∣∣∣
ε=0

= − ∂`(y′; θ)>

∂θ

∣∣∣∣
θ=θD

H−1 ∂`(y; θ)

∂θ

∣∣∣∣
θ=θD

which matches the expression of influence in-
troduced above.

We now connect influence with the prece-
dent sections on importance sampling and con-
trastive data selection. We consider a lan-
guage models with weights θD, trained on the
generic training set D. Its first order Taylor
expansion at θD is

logP (y|θD + ∆θ) =

logP (y|θD) + ∆θ>g(y; θD) +O
(
‖∆θ‖2

)
(3)

where g(y; θD) = ∂
∂θ logP (y|θ)

∣∣
θ=θD

. If the
model pre-trained on D is fine-tuned on T by
performing a single step of gradient descent
with learning rate λ, we get

θT = θD − λ
∂

∂θ
L(T ; θ)

∣∣∣∣
θ=θD

= θD + λ E
y∼T

[g(y; θD)] .

In that case, the log-odd of the two models
therefore has the following Taylor expansion,

logP (y|θT )− logP (y|θD) =

λ E
y′∼T

[
g(y′; θD)>g(y; θD)

]
+O

(
‖θD − θT ‖2

)
.

If we assume that the model hessian is the
identity, Hθ = 1, we therefore have

logP (y|θT )− logP (y|θD) =

− λ E
y′∼T

[
I(y, y′)

]
+O

(
‖θD − θT ‖2

)
.

The hessian assumption might be dropped
when the model is fine-tuned with a Newton-
style update (Boyd and Vandenberghe, 2014).
The above relation means that the negative
mean influence of a point y ∈ D over the set
T also corresponds to the log of the estimated
importance weights introduced in Section 6.1,
i.e.

logwimp
D,T (y) =

− λ E
y′∼T

[
I(y, y′)

]
+O

(
‖θD − θT ‖2

)
.

Of course, this relation holds only in the case
where a single gradient step is performed for
fine-tuning. This relation allows estimating
the reduction in test loss (here over T ) when
removing training samples from D with pos-
itive influence which is also the goal of intel-
ligent data selection. This strategy has been
applied to label noise filtering (Koh and Liang,
2017), class rebalancing (Ren et al., 2018) and
domain adaptation (Wang et al., 2021).

7 Conclusions

This work focuses on domain adaptation for
neural language modeling. It compares the
generalization properties of a model trained
over a large out-of-domain corpus as opposed
to a model trained over a small in-domain cor-
pus. It shows how fine-tuning, the most com-
mon approach for neural LM adaptation can
achieve better trade-offs than either solutions.
We then focus on data selection techniques, i.e.
techniques to emphasize in-domain data in an
out-of-domain training set and show that com-
mon techniques can all be derived from impor-
tance sampling.

This theoretical paper rises interesting em-
pirical questions we aim to answer in future
work: e.g. the binarization of importance sam-
pling weights in intelligent selection is a simple
variance reduction technique and more sophis-
ticated alternative might be beneficial empir-
ically. Influence functions suggest that exam-
ples with importance sampling weights lower



than one have only a negative effect on the in-
domain likelihood but this might not be con-
firmed empirically...

In addition to empirical questions, our anal-
ysis should be extended to cover more applica-
tion settings. In particular, we did not consid-
ered adaptation scenarios where novel adapter
layers are introduced during fine-tuning. Nei-
ther did we consider cases when one might be
interested in a generalization error different
from the training loss: for instance machine
translation training often relies on negative log
likelihood but other metrics are used for eval-
uation.
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A Proof of Theorem 1

When the distributions T and D differ, the
Kullback–Leibler (KL) divergence between the
two distributions is considered. We show that
the generalization of the loss of θD over T is
upper bounded

∀ε > 0, ∃N s.t. ∀D ∼ Dn,
L(θD; T ) ≤ H(T ) +KL(T ,D) + ε (4)

with probability 1− ε This bound justifies in-
tuition that if given the choice between two
generic domain D and D′, training over the
one with the lowest KL divergence to T will
result a in better asymptotic behaviour.

Proof. We consider the asymptotic case for the
size of D. For any ε > 0, the universal approx-
imation property allows us to consider a model
capacity large enough such that

Lapp(D,Θ) <
ε

2

Using consistency, we can also consider a train-
ing set D large enough such that

Lest(D,Θ, D) <
ε

2

with probability 1− ε. With the same proba-
bility,

L(θD;D) < LH(D) + ε

which can be rewritten as a bound on the
Kullback-Leibler divergence,

KL(P (·|D), P (·|θD)) = L(θD;D)−LH(D) < ε.

This bound can help connecting the general-
ization loss of θD over T with the Kullback-
Leibler divergence of T and D,

L(θD; T )

=
∑
y∈Ω

P (y|T ) logP (y|θD)

=
∑
y∈Ω

P (y|T ) log(P (y|D) + P (y|θD)− P (y|D))

≤
∑
y∈Ω

P (y|T ) log(P (y|D) + |P (y|D)− P (y|θD)|)

≤
∑
y∈Ω

P (y|T ) log(P (y|D) + 2ε2) (5)

≤
∑
y∈Ω

P (y|T ) log(P (y|D)) + log(1 + 2mε2)

≤ H(T ) +KL(T ,D) + log(1 + 2mε2)

where m = 1/miny P (y|D) assumes that
P (·|D) has full support, and (5) relies on
Pinsker’s inequality, i.e. maxy |P (y)−Q(y)| <
2KL(Q,Y )2.


