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Abstract

Language models trained on very large web corpora have become a central piece
of modern language processing. In this paradigm, the large, heterogeneous training
set rarely matches the distribution of the application domain. This work considers
modifying the training distribution in the case where one can observe a small
sample of data reflecting the test conditions. We propose an algorithm based on
recent formulation of this problem as an online, bilevel optimization problem. We
show that this approach compares favorably with alternative strategies from the
domain adaptation literature1.

1 Introduction

Large models pretrained from massive, heterogeneous datasets have impacted various application
domains [5], including natural language processing [9], computer vision [28] and audio process-
ing [38]. These models are typically trained on two different distributions, a generic distribution for
pretraining and a specific distribution for fine tuning. Only the specific distribution matches the test
conditions while the generic distribution offers an abundant source of data with some similarities to
the specific data. This novel paradigm builds upon multitask learning [6], transfer learning [4] and
domain adaptation [29]. For all these methods, the accuracy of a model on the specific task crucially
depends on selecting an appropriate distribution over generic auxiliary tasks and data.

Prior work has proposed automatic methods to adjust the generic training distribution in order to
improve generalization on the specific task. The domain adaptation literature has explored variants
of importance sampling, using importance weights to emphasize or select some generic examples.
These weights have been determined via domain classifiers [1, 14], via gradient alignment and
fine-tuning [42, 13] or via the estimation of the label distribution [30]. Related to domain adaptation,
the removal of label noise in the generic distribution has received attention with methods based on
influence functions [22, 33, 37], data models [17, 18] and data Shapley values [12, 20].

As an alternative to static weighting, the literature also explored dynamic weighting where the
distribution over generic examples is adapted during training. Two main strategies have been
leveraged: reinforcement learning and direct optimization. Reinforcement learning does not assume
that the specific task loss can be differentiated with respect to the weighting parameters. Instead, a
parameterized model of the generic distribution is adjusted through reinforcement: the current model
proposes generic distributions and their reward is measured as the specific loss after a few steps of
generic training over a proposal distribution [23, 44, 48]. On the other hand, direct optimization
assumes a differentiable functional dependency between the weighting parameters and the specific
training loss. This dependency can be derived through meta learning by unfolding the generic
update [35, 16, 39, 46]: one gradient update step minimizing the weighted generic loss depends on
the weighting parameters. This update can be evaluated by computing the post update specific loss
which can then be differentiated with respect to the weighting parameters. As an alternative to update
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unfolding, a bilevel formulation of the reweighting problem also allows for direct optimization [10].
Our work builds upon this formulation: we propose an online optimization strategy that leverages
the cost asymmetry between the inexpensive evaluation of training example weights and the costly
evaluation of the gradient of a large language model at these points.

Other research areas intersect with generic sample reweighing. Prior work considered learning a
distribution over training data augmentation [15, 26, 49]; curriculum learning has been introduced to
visit successive training distributions based on training instance difficulty [3, 24, 19, 36]; multi-task
learning research has considered gradient projection to minimize negative interactions between
tasks [45, 8, 27]. Importance sampling for accelerated stochastic training [47, 21] is also relevant.

Our work has multiple contributions. Our work (i) formalizes data selection as a bilevel optimization
problem, (ii) connects Differentiable Data Selection (DDS) and Stochastic Bilevel Algorithm (SOBA)
which were proposed independently, (iii) introduces an online algorithm to perform data selection
while training large models. Finally, (iv) we demonstrate the benefit of our method through an
empirical comparison with the main alternative strategies.

2 Method

We aim to identify the parameters θ of a neural language model that achieves good generalization
performance (held-out likelihood) over the specific distribution. For that purpose, we are given a large
generic training set Dgeneric and small specific training set Dspecific. Only the latter set is representative
of the test conditions. The generic training problem minimizes the weighted loss,

Lgeneric(θ, α) =
∑

x∈Dgeneric

w(x;α)ℓ(x; θ)

where w(x;α) denotes a smaller, secondary weighting neural network which defines a distribution
over Dgeneric, i.e. ∀x,w(x;α) > 0 and

∑
x∈Dgeneric

w(x;α) = 1. We denote the solution to the generic
training problem as

θ∗(α) ∈ argmin
θ
Lgeneric(θ, α) (1)

Our goal is to find the parameter of the weighting network such that the loss on the specific training
set is minimal, i.e. minimizing the following with respect to α,

Lspecific(θ
∗(α)) :=

∑
x′∈Dspecific

ℓ(x′; θ∗(α)). (2)

2.1 Data Selection as a Bilevel Optimization Problem

Our notations make clear that finding the optimal weighting network can be cast as a bilevel op-
timization problem: with a fixed weighting network, the optimal parameters for the main model
are found by minimizing the weighted loss over the generic dataset, Eq. (1). The optimal main
model parameters θ∗ depends explicitly on the weighting network parameters α; indeed, changing α
changes the optimization problem in (1) and its solution. The selection of α is driven by the specific
set loss, Eq. (2).

Equations (1) and (2) form a bilevel optimization problem [10]: the outer problem (2) depends
implicitly on α through the solution to the inner problem (1). One of the strengths of such a bilevel
formulation is that the weighting network must adapt to the main model: the question is to learn
a weighting network such that the main model trained with that network leads to good specific
performance. This has the potential to go beyond a simple model-agnostic scheme that would, for
instance, build w(x) based on the similarity between x and the specific set. While a large body of the
literature is devoted to solving bilevel problems where the inner problem (1) is convex in θ [11, 2], in
our case (1) corresponds to the training problem of a neural network which is non-convex. This leads
to several difficulties:

• The argmin in (1) is not a single element since there are multiple minimizers. Therefore, the
function θ∗(α) is not properly defined.

• In order to use gradient-based methods to find the optimal α, we have to compute the approximate
Jacobian of θ∗(α). This is usually done using the implicit function theorem, which only applies
when the loss function in (1) is locally convex and such property is hard to check in practice.
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Furthermore, we want a method with a computational cost similar to the standard training of the main
model. In other words, we have enough budget to solve (1) only once: learning α and θ must be
carried out synchronously. This has an important consequence: the bilevel methods that we study
update α based on the current main model state θ and not on the optimal solution θ∗(α). Hence, this
is a slight deviation from the bilevel formalism. This also means that the weighting network adapts to
the current state of the main model and, ideally, tries to up-weight generic data that is useful at the
current state of learning. We explore online algorithms to solve the bilevel problem when the main
language model is large. These algorithms alternate θ and α updates and leverage the asymmetry in
computation cost between evaluating the large language model and the small weighting network.

2.2 Updating the main model: the big-batch trick.

To update the main model, we fix α and do a step to minimize (1). A first, natural idea would
be to take a mini-batch of generic data Bgeneric of size b, compute the corresponding gradient
g = 1

b

∑
x∈Bgeneric

w(x;α)∇θℓ(x; θ) and then use it to update θ, either implementing SGD by doing
θ ← θ − η × g with η > 0 a learning rate, or by using it into a more involved optimizer like Adam.
However, the computation of g with the previous equation can be wasteful when a significant fraction
of the examples of Bgeneric are assigned small weights w(x;α). These examples do not contribute
much to g while still requiring the expensive computation of their gradient∇θℓ(x; θ).

To accelerate the optimization of θ, we leverage the asymmetry between the cost of evaluating
the weighting network and the main model: computing w(x;α) only requires inference of a small
network while computing ∇ℓ(x; θ) requires inference and back-propagation through a large network.
We start by sampling a large batch Bbig

generic from the generic dataset and compute w(x;α) for each x

in Bbig
generic. From there we can take a smaller batch Bsmall

generic from Bbig
generic, either by sampling from the

distribution defined by w(x;α) or by taking the examples with the highest w(x;α). The first option
is an unbiased solution corresponding to importance sampling, while the second option is biased but
observed to work better in practice. In both cases, we compute the gradient to update θ with uniform
weights, using g = 1

b

∑
x∈Bsmall

generic
∇θℓ(x; θ).

2.3 Updating the weighting model

We consider two alternatives to update the weighting model. With scalability in mind, we only
consider stochastic methods, i.e., that update the weighting network parameters α using only a
mini-batch of specific data Bspecific and a mini-batch of generic data Bgeneric.

2.3.1 One gradient step unrolling - differentiable data selection (DDS)

This method is similar to [43], and updates the weighting network by doing a descent step on the loss

L(α) =
∑

x′∈Bspecific

ℓ′(x′;u(θ, α)) with u(θ, α) = θ − ρ×
∑

x∈Bgeneric

w(x;α)∇ℓ(x, θ), (3)

which corresponds to the value of the specific loss on the mini-batch Bspecific after a gradient descent
step for θ on the generic mini-batch Bgeneric using the current weights. The idea behind this method is
that u(θ, α) is a reasonable approximation to θ∗(α). This method requires backpropagating through
a gradient descent step, which requires only a little overhead compared to a standard gradient compu-
tation. In the limit where the step size ρ in the gradient update u(θ, α) goes to 0, we see that L(α) ≃
ρ⟨gspecific, ggeneric⟩, with gspecific =

∑
x′∈Bspecific

∇ℓ′(x′; θ) and ggeneric =
∑

x∈Bgeneric
w(x;α)∇ℓ(x, θ).

Hence, the loss L approximately measures the alignement between specific and generic gradients.
Taking derivatives gives∇L(α) ≃ ρ

∑
x∈Bgeneric

⟨gspecific,∇ℓ(x, θ)⟩∇w(x;α).

2.3.2 Stochastic Bilevel Algorithm (SOBA)

We also implement the SOBA method of [7], which is a scalable method to solve the bilevel problem,
developed in a setting where the inner function (1) is convex. This algorithm approximates a gradient
descent on h(α) = Lspecific(θ

∗(α)). The chain rule gives ∇h(α) = ∂θ∗

∂α ∇Lspecific(θ
∗(α)). The

optimum θ∗(α) satisfies the first order condition ∇θLgeneric(θ
∗(α), α) = 0. Under the assumption

that the Hessian ∇2
θθLgeneric(θ

∗(α), α) is invertible, the implicit function theorem applied to the
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Table 1: Model architecture

Language model
Transformer decoder with 12 layers, 8 at-
tention heads, residual dimension of 256,
feed-forward latent dimension of 1,024.

Weight model
Convolutional network with 2 layers fol-
lowed by mean pooling, latent dimension
of 128.

Table 2: Log-perplexity on specific (Reuters).

Method Pre-train Fine-tune
Baseline 1.197 0.864
Mixing 0.860 0.846
CDS 1.071 0.830
Domain classif. 1.099 0.892
MetaWeightNet 1.212 0.867
LTR 1.150 0.877
Sparse DDS 1.033 0.822
Sparse SOBA 1.018 0.819

previous equation gives ∂θ∗

∂α = −∇2
αθLgeneric(θ

∗(α), α)
[
∇2

θθLgeneric(θ
∗(α), α)

]−1
, which overall

yields ∇h(α) = −∇2
αθLgeneric(θ

∗(α), α)
[
∇2

θθLgeneric(θ
∗(α), α)

]−1∇Lspecific(θ
∗(α)). SOBA ap-

proximates this quantity in two ways: first, θ∗(α) is replaced by the current iterate θ in the above
gradient. Second, in addition to θ and α, SOBA has an additional variable v of the same size as θ that
keeps track of the quantity−

[
∇2

θθLgeneric(θ, α)
]−1∇θLspecific(θ). This is done using the stochastic it-

erations v ← v−η×dv with dv =
∑

x∈Bgeneric
w(x;α)∇2ℓ(x; θ)v+

∑
x′∈Bspecific

∇ℓ′(x′; θ). The first
part in dv is a Hessian-vector product that can be computed efficiently at a cost similar to that of a gradi-
ent [32]. Then, the parameters α are moved in the direction dα =

∑
x∈Bgeneric

⟨∇ℓ(x; θ), v⟩∇w(x;α),
which is a stochastic approximation of∇2

αθLgeneric(θ, α)v, which is itself an approximation of∇h(α).

3 Experimental Evaluation

Our language modeling experiments relies on the C4 dataset [34] as the generic set and the RCV1 [25]
as the specific set. C4 is a dataset of English language web pages [31], while RCV1 consists of
Reuters newswire stories. This setup is representative of a generic large corpus spanning different
types of examples (C4) while the specific task contains an homogeneous set of examples from the
same domain and from the same source (RCV1). Our setup uses 30m examples from C4 and 10k
examples from RCV1. We compare our results with contrastive data selection, CDS [40, 42], domain
classifier selection [14], meta-weight net [39]). and learning to re-weight, LTR [35]. We also consider
mixing, i.e. training with a trade-off between the specific and generic loss. We denote bilevel methods
with Sparse DDS and Sparse SOBA, to highlight the difference in size between Bsmall

generic and Bbig
generic.

Our experiments rely on a size ratio of 1/8.

Our language model is a byte-level language model based on the transformer [41]. The weighting
network is a small convolutional network. Table 1 gives architectural details. We also use the same
architecture for the domain classifier baseline. We report performance in terms of log-perplexity, i.e.
negative log likelihood.

Table 2 reports two types of results. Pretraining results rely on the specific set only to adjust the
weighting network, while the language model is trained solely on the weighted generic loss (except
for the mixing method). The second set of results evaluate whether the benefit from the adjusted
pretraining generic distribution can be complementary to the most common domain adaptation
technique, i.e. fine tuning the model on the specific set after pretraining. In both cases, bilevel
methods are advantageous and SOBA performs better than DDS.

4 Conclusions

We presented a bilevel optimization strategy to learn training distributions for learning language
models in situation where most of the training comes from a distribution different from the targeted
test distribution. Our proposal emphasizes scalability by (i) considering a distribution parameterized
with a neural network much smaller by the learned language model and (ii) an online algorithm which
lets the optimization of the language model focus only on the most beneficial examples. Its advantage
is demonstrated empirically to alternative domain adaptation strategies. We plan to investigate if our
approach can also be beneficial in other application domains in the future.
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