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Abstract
Large language models have emerged as a versatile tool but
are challenging to apply to tasks lacking large inference
budgets and large in-domain training sets. This work
formalizes these constraints and distinguishes four important
variables: the pretraining budget (for training before the
target domain is known), the specialization budget (for
training after the target domain is known), the inference
budget, and the in-domain training set size. Across these
settings, we compare different approaches from the machine
learning literature. Limited by inference cost, we find
better alternatives to the standard practice of training very
large vanilla transformer models. In particular, we show
that hyper-networks and mixture of experts have better
perplexity for large pretraining budgets, while small models
trained on importance sampled datasets are attractive for
large specialization budgets.

1 Introduction
Training large language models enables versatile models,
but their high inference cost limits them to high-value
applications (Brown et al., 2020; Bommasani et al., 2022).
Despite progress in approximated inference (Aminabadi
et al., 2022; Sheng et al., 2023; Dettmers & Zettlemoyer,
2023), large models remain costly, or even impractical for
mobile hardware. Under tight inference constraints, one
might consider a small model specialized to the domain
at hand. This paper studies training small specialized
models, even with limited domain data. To achieve low
perplexity, we use three key elements: generic training
corpora, importance sampling, and asymmetric models
with fewer parameters at inference than during training,
such as mixtures of experts or hyper-networks.

With inference cost and in-domain training data limits,
we study alternative strategies with varying training cost.
We also take into account how training cost can be shared
across domains. For our study, we consider 4 important
metrics:

Generic training cost: the cost of the training phase
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Figure 1: Practical recommendations for training lan-
guage models that fit a predefined computational budget.
that can be performed before the specialization data are
available, on a generic training set. This cost is shared across
multiple specialized models and is often called pretraining.
Although not mandatory, generic training data are essential
when specialization data are limited.

Specialization training cost: the cost of the training
performed once the specialization data are available. This
cost is not shared across different specialized models.

Inference cost: the cost for running inference on a
specialized model. As part of the inference cost, one might
also be interested in a model which involves a small number
of parameters per specialized task, e.g. considering memory
and network constraints. Low inference cost allows wider
model deployment.

Size of the specialization training set: varies across
applications and influences pretraining and specialization
choices.

We take the inference cost and the specialization data size
as hard constraints and study the operating curves resulting
from varying the generic and specialization training costs.
We compare different training approaches and highlight at
which operating point they are interesting.

2 Methods
We consider different architectures to satisfy our inference
constraint while leveraging a large generic pretraining set.
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We assess the drop in perplexity from our inference con-
straint compared to a larger model trained on the same data.
Our recommendations are summarized in Figure 1.

2.1 Large Model
Large Model (LLM) One trains a large language model
(LLM) on the generic data and uses this model as-is at in-
ference (Brown et al., 2020; Kaplan et al., 2020; Hoffmann
et al., 2022). This approach requires a high pretraining cost
but does not require specialization data and has no special-
ization cost. Inference cost for this method is high. Having
never seen specialized data, it might be inaccurate when
the specialization distribution is far from the pretraining
distribution.

After generic pretraining, fine-tuning over specialization
data can adapt the model (Howard & Ruder, 2018; Agha-
janyan et al., 2021). This step usually improves perplexity
but adds a specialization cost. This cost is limited when the
amount of specialization data is small: early stopping limits
fine-tuning to a few updates to avoid overfitting. Fine-tuning
leaves the inference cost unchanged.

Parameter Efficient Tuning One fine-tunes only a sub-
set of the parameters once the specialization data are avail-
able (Hu et al., 2021; Lester et al., 2021; Houlsby et al.,
2019). This strategy is advantageous if the specialization
data are scarce because it mitigates overfitting. However,
tuning fewer parameters may require more fine-tuning steps
and hence increase the specialization cost. This method is
practical when one needs to communicate only small model
deltas for each new specialization. See Section F in the
Appendix.

2.2 Small Model
Small Model (SLM) One trains a single small language
model (SLM) before the specialization data are available
and uses this model as-is at inference. This method does
not require specialization data or incur any specialization
cost. The inference cost for this method is low and so is the
pretraining cost. However, a small model cannot use a large
amount of generic data as well as a large model resulting in
worse downstream performance. Similarly to larger models,
fine-tuning can improve performance with an additional
specialization cost.

No Pretraining (SLM-nopt) This method only trains
the model on the specialization data. This is advantageous
when the specialization budget and amount of specialized
data are large or when the generic training distribution is
very far from the specialization domain.

Importance Sampling (SLM-is) This method does not
pretrain the model before the specialization data are avail-

able. Once the specialization set is given, SLM-is samples
a tailored training set from the generic pretraining data
to match the specialization distribution (Xie et al., 2023).
This method is a case of data selection (Moore & Lewis,
2010; Grangier & Iter, 2022) and is advantageous when the
specialization data are scarce. This method incurs a high
specialization cost since pretraining on a (possibly large)
tailored training set is necessary for each specialization do-
main. After pretraining, the model can be further fine-tuned
over the specialization data.

Distillation (SLM-d) This method (Hinton et al., 2015;
Hsieh et al., 2023b; Zhu et al., 2023) uses a fine-tuned
large model as a teacher and distills it in a small student
model. Compared to the large teacher model, inference
cost is lower, but accuracy is also reduced. Compared to
a small model without distillation, the accuracy can be
better. The teacher model provides rich targets from a
model with better generalization, often reducing overfitting
to the specialization set. Compared to SLM fine-tuning, this
method has a higher generic pretraining cost: it requires
generic training of a large model and a small model. Its
specialization cost is also greater since it requires tuning
the teacher model and then collecting the teacher outputs
during distillation.

2.3 Hard Mixture of Experts (SLM-mix)
This method (Eigen et al., 2014; Gross et al., 2017) divides
the large pretraining set in smaller subsets, e.g. via clus-
tering, and pretrains a small model (expert) on each part.
Its pretraining cost and its overall number of parameters
are high as both scale linearly with the number of clusters.
Inference with a hard mixture is typically performed by
forwarding each example to the expert corresponding to the
cluster the example belongs to.

Once the specialization data are available, we specialize
the mixture by selecting a single expert for each special-
ization task. One option is to select the expert whose
pretraining cluster is the most frequent cluster in the spe-
cialization data. Alternatively, if the specialization budget
is sufficient, we can select the expert with the smallest loss
on average on the specialization data. Selecting a single
expert per domain is advantageous as it communicates and
loads only a small part of the mixture weights for inference
on the target domain, but it might be detrimental when the
specialization data are spread across multiple clusters.

SLM-mix can be fine-tuned. With a large specialization
budget, one can fine-tune each expert and select the best-
performing one. With a smaller budget, one can instead
fine-tune just the best-performing expert at pretraining or
the expert whose pretraining cluster is the most frequent
cluster in the specialization data. This second option makes

2



the cost of specialization identical to SLM fine-tuning.

2.4 Hyper-Networks (SLM-hn)
Hyper-networks (Ha et al., 2017) are neural networks that
decompose into two parts: the hyper-sub-network and the
instantiated sub-network. The hyper-sub-network creates
weights for the instantiated sub-network. We rely on hyper-
networks to create a mixture of experts: the hyper-sub-
network takes the cluster membership of an input to produce
the sub-network weights. These cluster-specific weights
instantiate a small sub-network or expert. Compared to a
hard mixture of experts, SLM-hn shares parameters across
experts via the hyper-sub-network and provides a flexible
way to independently select the capacity of the mixture and
the number of clusters. An instantiated sub-network can be
fine-tuned on specialization data.

3 Experimental Setup
We present the datasets for our experiments, the experimen-
tal setting for each method and the evaluation metrics.

3.1 Datasets
Our generic pretraining set is c4, a large filtered dataset of
English text derived from commoncrawl (Raffel et al., 2020).
We tokenize the data with a sentence piece model trained on
c4 with a vocabulary size of 32k. We consider specializing
to nine diverse domains, extracted from the Pile (Gao et al.,
2021): arxiv (science articles), europarl (parliamentary
proceedings), freelaw (legal text), gutenberg (old books
pusblished before 1919), opensubtitles (theatrical subtitles),
openwebtext2 (forum discussions), pubmed-abstracts (med-
ical article abstracts), stackexchange (Q&A mostly about
technical topics), wikipedia (encyclopedia articles). We
vary the amount of specialization training data available
and consider sets of size 1, 8 and 64 million tokens for each
domain.

3.2 Clustering
Hard mixture-of-experts, hyper-networks and importance
sampling rely on document clustering. We use sentence
BERT (Reimers & Gurevych, 2019) to embed the c4 docu-
ments into 768-dimensional vectors and cluster them with
the kmeans algorithm. We explore different numbers of
clusters ranging for 4 to 1,024 clusters.

3.3 Language Models
We perform our experiments with transformer mod-
els (Vaswani et al., 2017). We consider two model sizes,
small and large. The small model has 126M parameters and
consists of 7 layers with a dimension of 1,024 and a latent
feed-forward dimension of 4,096. Our large model has
770M parameters with 7 layers with a dimension of 2,816
and a latent feed-forward dimension of 11,264. Models are
trained and evaluated with a context of at most 1,024 tokens,
splitting longer documents into non-overlapping windows.

3.4 Distillation
For distillation, we use a fine-tuned LLM as the teacher and
an SLM pretrained on the generic set as the student. Distil-
lation training operates on the specialization data and trains
the student to minimize the KL divergence between its pre-
diction and the teaching distribution, a mixture between the
data distribution and the teacher model prediction (Hinton
et al., 2015). The teaching mixture weight is a hyperparam-
eter (0.95 in our experiments). In this method, the generic
training cost is dominated by the training of the teacher
model while the specialization cost is also dominated by
the cost of fine-tuning the teacher model. This method has
an additional smaller cost of pretraining the SLM on the
generic dataset and teaching the SLM on the specialization
dataset.

3.5 Mixture of Experts
We train hard mixtures (Gross et al., 2017) of transformers
for pretraining. The pretraining set is divided into clusters
and an independent SLM is trained on each cluster. For
specialization, we consider a simple strategy: we cluster the
specialization set with the pretraining centroids to determine
the most frequent cluster in the specialization set. We fine-
tune only the model pretrained on this cluster. Hard mixtures
are interesting here since they allow training a model with
a large total number of parameters while fine-tuning and
running inference only with a small model.

If the pretraining budget is low, one can forgo pretraining
models on all clusters and, instead, increase the special-
ization budget to train a model only on the cluster of the
generic dataset corresponding to the most frequent cluster
in the specialization set, once this set is available.

3.6 Hyper-Networks
Hyper-network (Ha et al., 2017; Karimi Mahabadi et al.,
2021) defines the general idea of a neural network whose
weights are themselves generated from a secondary network,
the hyper-network, based on a conditioning input variable.
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In our case we associate each example with its cluster
membership variable, using the clustering mentioned in
Section 3.2. This variable is the input of the hyper-network
which produces the feed-forward (i.e. multi-layer percep-
tron, MLP) matrices of a transformer language model for
all layers except the first two. The other parameters of the
transformer do not depend on the cluster and are the same
for all examples.

Our hyper-network instantiates two MLP matrices
𝑊 (1,𝑙,𝑖) ,𝑊 (2,𝑙,𝑖) for each layer 𝑙 and each cluster 𝑖. It
relies on two hyper-parameters: the latent dimension ℎ

and the number of experts 𝑚. Each cluster 𝑖 is associated
with the h-dimensional embedding 𝑐 (𝑖) . Each layer l is
associated with the ℎ × 𝑚-matrix 𝑀 (𝑙) . We compute the
matrices

𝑊 (1,𝑙,𝑖) = 𝑐 (𝑖) 𝑀 (𝑙) ·𝑇 (1,𝑙) and 𝑊 (2,𝑙,𝑖) = 𝑐 (𝑖) 𝑀 (𝑙) ·𝑇 (2,𝑙)

as the weighted sum between the vector 𝑐 (𝑖) 𝑀 (𝑙) and
the three dimensional tensors 𝑇 (1,𝑙) , 𝑇 (2,𝑙) respectively of
shape 𝑚 × 𝑑latent × 𝑑in and 𝑚 × 𝑑in × 𝑑latent. These tensors
hold most of the model parameters, i.e. 𝑚 times as many
parameters as the corresponding MLP matrices. This
strategy enables increasing 𝑚 to increase the overall model
capacity while keeping the size of the model instantiated
for each cluster constant. Of course, we illustrate one
choice of hyper-network architecture, but many alternatives
are possible (Muqeeth et al., 2023; Abnar et al., 2023).
Compared to hard mixtures of experts, the hyper-networks
have stronger capacity limitations since the training problem
cannot be split into independent, low-memory training tasks.
On the other hand, the weights of each of the 𝑚 experts —
both the attention parameters, which are the same for all
experts, and the MLP tensors — are trained jointly, hence
the hyper-network model can be more parameter efficient.

For specialization, we follow a strategy similar to the hard
mixture case: we instantiate the model at the most frequent
cluster on the specialization set and fine-tune it. Fine-tuning
therefore does not operate on the large hyper-network but
only on the small instantiated model.

3.7 Importance Sampling
Our importance sampling method relies on the k-means
clustering from Section 3.2. It is a streaming method
that requires only the histogram of cluster frequencies in
the targeted distribution ℎ𝑡 . It relies on a large buffer of
pretraining documents, e.g. 𝑁 ≃ 100k. We compute the
cluster histogram ℎ𝑏 in the buffer and take 𝑁𝑖 documents in
each cluster 𝑖. 𝑁𝑖 = 𝑁×ℎ𝑡

𝑖
×min 𝑗 (ℎ𝑏𝑗 /ℎ𝑡𝑗 ). is the maximum

number of documents we can take for each cluster while
enforcing that the histogram of the 𝑁𝑖 matches the target
histogram ℎ𝑡 . The selected data are then used for training.

Table 1: Number of parameters (in millions) for pretrain-
ing and inference.

Model Num. parameters (M)
Generic Pretrain Inference

Small LM (SLM) 126 126
Mixt. of experts (SLM-mix) 2,016 126
Hyper network (SLM-hn) 1,422 126
Large LM (LLM) 771 771

3.8 Metrics
We rely on perplexity, the standard language modeling
metric, for our evaluation. We measure perplexity on
held out data using 20k documents per dataset. We focus
solely on language modeling and evaluating the models
on downstream tasks (e.g. question answering, sentiment
analysis, translation, etc) is beyond the scope of the paper.

We measure training cost (pretraining and specialization)
in hours of graphic processor compute time (GPUh) on the
same hardware (Nvidia-A100). We consider pretraining
costs ranging from 10 to 650 GPUh and specialization cost
ranging from 0.3 to 120 GPUh.

4 Empirical Results
We first report our main results before diving into a detailed
discussion for each method.

Table 1 reports the number of parameters for the pre-
trained and specialized models. Table 1 illustrates that
SLM-hn and SLM-mix are as small as SLM for inference
after specialization while their overall number of pretrained
parameters is larger than LLM. Table 2 reports the through-
put of the models. All SLM models have the same special-
ization throughput while SLM-hn has a lower throughput
than SLM, SLM-mix for pretraining. LLM is more expen-
sive in all cases. Table 3 presents the upper limit in training
budgets for pretraining and specialization over all settings.

We consider varying pretraining budget and report per-
plexity on the generic pretraining set (c4) for each method
in Figure 2. When we consider SLM-hn and SLM-mix, we
observe that even if the number of pretrained parameters
is larger than LLM, they do not enjoy as good perplexity.
However, their perplexity is better than SLM while they are
as efficient when tested or fine-tuned on a single cluster.

Perplexity on c4 is not our main goal and we report
the perplexity on the specialization domains from Pile,
see Section 3.1. We report held-out perplexity by macro-
averaging on the nine sets. We compute the mean negative
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Table 2: Model throughput (GPU hours per 1B training
tokens).

Model Training Inference
Generic Pre. Specialization

SLM 2.2 2.2 0.61
SLM-mix 2.2 2.2 0.61
SLM-hn 3.6 2.2 0.61
SLM-is N/A 2.2 0.61
LLM 7.7 7.7 2.54

Table 3: Train cost limits for pretraining and specializa-
tion (GPUh)

Model Pretraining Specialization
1M 8M 64M

LLM ≤ 650 ≤ 0.12 ≤ 0.5 ≤ 3.5
SLM ≤ 530 ≤ 0.02 ≤0.07 ≤ 0.5
SLM-is 0 ≤ 130 ≤ 130 ≤ 130
SLM-d ≤ 1,850 ≤ 0.7 ≤ 2.8 ≤ 21
SLM-mix ≤ 650 ≤ 0.02 ≤0.07 ≤ 0.5
SLM-hn ≤ 650 ≤ 0.02 ≤0.07 ≤ 0.5

log likelihood per token for each set, average the nine
numbers and compute their exponential. All domains
therefore get the same weight, regardless of the size of the
held-out set.

Figure 3 (a) reports the results before fine-tuning. The
reported perplexities are much higher than the c4 perplexi-
ties, and indicate that specialization is necessary. Figure 3
(b) reports the results after fine-tuning several pretrained
checkpoints for each method on the 1M token dataset of
each domain. Each domain-specific model is evaluated
before macro-averaging. Since 1M tokens is a small set,
fine-tuning relies on a small learning rate and early stop-
ping (base learning rate divided by 3, always stopping after
less than 2k fine-tuning steps on one GPU). Fine-tuning is
highly beneficial for all methods and results in significantly
improved perplexity. We also remark that pre-fine-tuning
perplexity on the Pile is not necessarily a good indicator
of post-fine-tuning perplexity: e.g. the SLM checkpoints
ordering is very different on the two curves, the order-
ing between SLM-mix and SLM-hn also changes during
fine-tuning.

We also consider fine-tuning on 8 and 64 million tokens
for each domain, see Figure 3 (c) and (d). More data allows
us to train slightly longer and keep the base learning rate
without overfitting. We stop at most after 4k steps and 30k
steps for the 8M and 64M cases respectively. We observe

that the benefit of a good starting point provided by SLM-hn
and SLM-mix (compared to SLM) erodes as the domain
training set size increases.

These figures report the perplexity of SLM-is as a constant
line. This method has no pretraining as we can only start
training once the domain data are available; bearing all the
training cost in the specialization phase. SML-is is the
best method with a small inference model in terms of post-
specialization perplexity. Interestingly, it even outperforms
the much larger model when specific in-domain data are
scarce (ie the 1M tokens case).
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Figure 2: Generic pretraining perplexity on c4.

4.1 Small and Large Models
Table 4 compares the perplexity on the Pile subsets for
the baseline transformer models. Pretraining and fine-
tuning are both necessary to achieve good perplexity on our
specialization sets. Without pretraining (SLM-nopt), a lot
of specialization data (64M tokens per domain) are required
in order to get acceptable performance. We also observe
that for both large and small models there is a large gap
in perplexity before and after finetuning; making it clear
that finetuning even on 1M in-domain tokens can result
in significant boost in performance. Finally, as expected,
the LLM results also illustrate that, for large inference and
pretraining budgets, it is beneficial to train large models on
the pretraining set (c4).

4.2 Distillation
Our distillation process takes a pretrained teacher (LLM)
and a pretrained student (SLM). We fine-tune the teacher
on the specialization set and we use the fine-tuned teacher
to supervise the student on the same set. In this process,
the generic pretraining cost sums two terms: teacher and
student pretraining. It is a question how to best spread the
cost between these two terms.
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(b) 1M tokens
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(d) 64M tokens

Figure 3: Specific perplexity on the Pile subsets (average) before and after fine-tuning with different amounts of
specialization data.
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Figure 4: Distillation results (dashed lines) on the 1M token specialization set for various teacher pretraining
budgets. On the left we show perplexity with respect to the student pretraining cost only and on the right with
respect to the overall pretraining cost.

Figure 4 (left) reports SLM-d perplexities with each curve
corresponding to a different amount of teacher pretraining
and has the student pretraining as the x-axis. It shows that
for settings over 276 GPUh of teacher pretraining (300k
steps), the student model SLM-d is significantly better than
vanilla SLM at the same level of student pretraining. This
plot demonstrates the benefit of a good teacher over an SLM
trained only over the specialization set targets.

Figure 4 (right) shows the same data changing the x-axis
to report the overall generic pretraining cost, summing the
teacher and student pretraining cost. When the teacher
pretraining cost is accounted for, SLM-d is not competitive
with the best methods like SLM-hn and SLM-mix.
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Table 4: Perplexity on the Pile (average) for small and
large LMs (for a limit of 650 GPUh of generic pretraining)

Model Pretrained Specialized
1M 8M 64M

SLM 33.0 18.2 14.8 12.0
SLM-nopt N/A 227.1 45.6 17.6
LLM 28.1 14.4 12.5 10.0

4.3 Mixture of Experts
Our hard mixture of experts relies on the generic dataset
split in clusters, see Section 3.2, and its number of experts
corresponds to the number of clusters. For fine-tuning, we
fine-tune only the expert corresponding to the most frequent
cluster in the targeted domain dataset. In this section, we
vary the number of clusters and discuss whether selecting
the most frequent cluster is a good strategy.

The overall capacity of the mixture and its training cost
is proportional to the number of clusters. Our main results
(Fig. 2, Fig. 3, etc) use 16 experts. We compare results with
4 to 256 experts. Intuitively, if the number of experts is too
large, the model would cost more to train and each cluster
would not contain enough data to train a model of the size
of SLM. Conversely, if the number of experts is too small,
the training cost is low but each SLM-sized expert would be
trained from a large cluster and would underfit its training
set. Also, the large clusters might be too generic and far
from the distribution of the targeted set. Figure 5 shows the
macro-averaged perplexity on the Pile as a function of the
generic pretraining time for the different mixture sizes in
the case of the 1M token specialization set.
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Figure 5: Specific perplexity of mixture models with
4-256 experts on Pile subsets (average) after fine-tuning
on 1M tokens.

As mentioned above, specialization fine-tunes a single
expert. We select the expert corresponding to the most
frequent cluster in the specialization data. Alternatively, we

Table 5: Selecting the best expert. Average specific per-
plexity for 1M tokens, fine-tuning different experts from
the same mixture of 64 experts after 700k pretraining
steps (∼ 600 GPUh).

Method Perplexity Specialization cost
Most frequent cluster 17.32 1x
Best pre-trained 17.05 1x
Best fine-tuned 16.98 64x

also consider selecting the expert which has the lowest loss
on the specialization set before fine-tuning, which involves
evaluating each expert. As a third costlier option, we fine-
tune all experts and pick the best one a posteriori. Table 5
reports this result when fine-tuning on 1M tokens for the
64 expert model. The results of the different strategies are
within 0.3 PPL of each other. The most costly option of
fine-tuning all experts performs best.

As a final observation on SLM-mix, the strategy of fine-
tuning only the expert corresponding to the most frequent
cluster enables the transfer of training cost from pretraining
to specialization. Namely, one can wait until the targeted
domain is known and then pretrain only one model on
the single cluster of interest. This is interesting when one
targets only a few domains. However, this strategy does
not perform as well as importance sampling as shown in
Figure 6.
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Figure 6: Specific perplexity after fine-tuning on 1M
tokens, when one is only training SLM-mix on the most
frequent domain cluster.

4.4 Hyper-networks
The number of experts in our hyper-networks allows tuning
the overall number of parameters while keeping the size of
the inference model constant. Figure 7 shows perplexity
on the Pile subsets after fine-tuning on 1M tokens. More

7



experts always perform better per iteration, however, 32
experts is more compute-time efficient in our setup.
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Figure 7: Specific perplexity for hyper-networks with
different number of experts after fine-tuning on 1M
tokens.

4.5 Importance Sampling
Our importance sampling strategy resamples c4 such that
its cluster histogram matches the cluster histogram from the
targeted Pile subset. The number of clusters is an important
parameter. A small number of clusters will change the
c4 distribution only in a coarse manner and will provide
a low fidelity match with the targeted set. Conversely, a
large number of clusters has two drawbacks. Firstly, when
the specialization set is small, cluster frequencies might be
poorly estimated for a large number of clusters. Secondly,
with a large number of clusters, the targeted histogram
might concentrate a big fraction of the mass on a few small
clusters, meaning that the resampled c4 dataset will contain
many repeated points from these clusters. This can degrade
performance as the effective size of the resampled c4 dataset
will be smaller with these repetitions.

Our main results report the importance sampling results
with 1,024 clusters. Figure 8 reports the results with 16, 64,
256 and 1,024 clusters.

The importance sampling method does not start train-
ing before the specialization set is given and a model is
pretrained from scratch on a different resampled dataset
for each specialization task. This means that importance
sampling has a much larger specialization cost when com-
pared to fine-tuning and this discrepancy only becomes
more important when addressing many tasks. For a model,
the total cost of specialization over 𝑁 tasks is

𝐶total (𝑁) = 𝐶generic pretrain + 𝐶specialization × 𝑁. (1)

For methods like hyper-networks, most of the cost is
𝐶generic pretrain and the main parameter to vary the total
cost is the number of generic pretraining steps. For the
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Figure 8: Specific perplexity for importance sampling
with different number of clusters after fine-tuning on 1M
tokens.

importance sampling method, 𝐶generic pretrain = 0 and the
main parameter to vary the total cost is the number of
steps performed when training on the importance sampled
pretraining set, which is part of 𝐶specialization.

We vary the total cost for SLM-hn and SLM-is when
hypothetically addressing 1, 7 and 50 tasks by scaling the
x-axis following Equation 1. Figure 9 shows that SLM-is
becomes less interesting when the number of tasks increases.
The specialization cost of fine-tuning for SLM-hn, which
increases linearly with the number of tasks, can be ignored
as it takes ∼ 1GPU minute.
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Figure 9: Specific perplexity for the hyper-network vs
importance sampling for the 1M token specialization
datasets. Varying the number of tasks increase the cost
of importance sampling linearly.

5 Related Work
Domain adaptation for language modeling has a long his-
tory, predating neural network language models (Rosenfeld,
2000). This research stemmed from the observation that
models trained on large amount of data, even far from the
targeted domain were impactful on end applications (Brants
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et al., 2007). After neural language models were intro-
duced (Bengio et al., 2000), they were also scaled up to
benefit from increasing amount of training data (Raffel
et al., 2020; Brown et al., 2020; Chowdhery et al., 2022;
Touvron et al., 2023). This growth involves a trade-off
between training a model from a large dataset (i.e. reduc-
ing estimation errors) or a dataset representative of the
end application domain (i.e. having a training distribution
representative of test condition), both essential to good
generalization (Vapnik, 1995).

Model fine-tuning and multi-task learning have become
essential tools in order to both benefit from large generic
training data and limited in-domain data (Caruana, 1993;
Collobert et al., 2011; Gururangan et al., 2020). Data
curation and selection methods have also been proposed
in order to resample generic data with a given application
domain in mind (Moore & Lewis, 2010; Wang et al., 2018;
Xie et al., 2023). Most of these methods can be tied to
importance sampling, an established statistical tool (Kahn
& Harris, 1951; Grangier & Iter, 2022).

Simultaneously with the growth in large language model
size, concerns about model inference cost gave rise to re-
search on efficient inference. Several routes are investigated
with this goal, including model distillation (Hsieh et al.,
2023a; FitzGerald et al., 2022), weight quantization (Xiao
et al., 2023; Dettmers & Zettlemoyer, 2023) and prun-
ing (Ma et al., 2023; Xia et al., 2023). Alternatively to
these methods, mixtures of experts have been investigated
as a way to decouple overall model capacity and inference
efficiency (Shazeer et al., 2017; Du et al., 2022; Clark et al.,
2022).

6 Conclusions
Our work on language modeling considers a common double
practical constraint: the lack of in-domain training data
and a limited inference budget. We consider different
alternative strategies to leverage a large, generic, out-of-
domain corpus under different training cost trade-offs. In
particular, we distinguish the generic training cost (shared
across different domains) and the specialization training cost
(specific to each domain). For a large specialization budget,
we recommend small models pretrained with importance
sampling, i.e. pretraining over the generic corpus resampled
via importance sampling. For a smaller specialization
budget, it is better to invest in the generic pretraining of
hyper-networks and mixtures of experts. These asymmetric
models have a large parameter count during pretraining but
can be instantiated as a smaller model for specialization.
Surprisingly, distillation is not competitive at the different
cost trade-offs we consider. Figure 1 summarizes our

recommendations.
As future work, we want to expand our evaluation to other

domains and larger model sizes and consider downstream
tasks evaluated with different metrics. Exploring hyper-
network architectures and their conditioning variable beyond
document clustering could also further improve their results.
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Appendix

A Hyper-parameters
All our language model are either instances of SLM or LLM.
We rely on the parameters from Table 6. Table 7 extends
Table 1 to include the parameter count for the models from
all the sections.

B Interpolated Perplexities
We report the data from the Figures 2 – 3 in Table 8. Since
the methods were evaluated at a fixed frequency in steps,
we linearly interpolate perplexities and step counts to report
results at the same pretraining costs for all methods.

C Number of Fine-tuning Steps
Figure 10 reports the fine tuning cost each model. This
cost corresponds to the number of steps to reach the best
validation perplexity. It is an optimistic cost estimates as
one usually needs a few more steps to assess that further
improvement is not expected. The fine-tuning cost seems
to grow ∼ 10X when the fine-tuning set size grows 8X.
The LLM usually requires less steps than the SLMs but its
steps are more expensive. The vanilla SLM overfits earlier
than the other SLMs (SLM-mix, SLM-hn) for the small 1M
specialization set but not for the larger sets.

D Clustering
The clustering of c4 is used by the mixture model to define
each expert scope. Similarly it is used as the condition-
ing variable by the hyper-network. Finally it is used by

Table 6: Transformer parameters

SLM LLM
Architecture

Mum. layers 7 7
Model dimension 1024 2816
Inner MLP dimension 4096 11264
Num. attention heads 8 22

Optimizer
Optimizer Adam Adam
Learning rate 1e-4 1e-4
Clipping norm 5.0 5.0
Linear warmum steps 1,000 1,000

Table 7: Number of parameters (in millions) for pretrain-
ing and inference.

Model Num. parameters (m).
Overall Inference

SLM 126 126
SLM-hn 16 experts 756 126

32 1,422 126
64 2,770 126

SLM-mix 4 experts 504 126
16 2,016 126
64 8,064 126

256 32,256 126
LLM 771 771

importance sampling to resample c4. Table 9 report the
concentration of each specialization domain from Pile on
their most frequent cluster. A high concentration could
be positive since it means that, when fine-tuning SLM-hn
or SLM-mix conditioned on this cluster, one starts starts
from pretrained weights containing most of the pretrain-
ing data relevant to the domain at hand. The table also
reports the most frequent cluster on c4 to highlight that
the specialization domain distributions differ from the c4
distribution.

E Individual Subset Results

Figure 11 decomposes the results in Figure 3 (b) per domain.
The subset results are mostly consistent with the average
but we observe few differences. SLM-hn and SLM-mix
have a close average and the best method among them
varies per subset. Also we notice that both methods do
not outperform SLM on wikipedia and openwebtext2. The
disadvantage of SLM-hn and SLM-mix over SLM can be
observed before fine-tuning, as shown on Figure 12. We
report the entropy of the cluster histograms in Table 10 and
observe that wikipedia and openwebtext2 are the domains
with the highest entropy. This means that the c4 data
similar to these datasets is more spread across clusters
than for the other domains. Conditioning SLM-hn and
SLM-mix on a single cluster variable might not model well
these domains. Of course, this correlation between entropy
and fine-tuned perplexity of SLM-mix, SLM-hn could be
fortuitous. This motivates us to investigate the impact of
the different clustering methods and their metrics in future
research.
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Table 8: Interpolated perplexities at fixed pretraining costs (GPUh)

Model Pretrain Num. Num. Generic Specific PPL
cost steps GPU PPL No ft 1M 8M 64M

SLM 100 798k 8 20.51 33.74 19.31 15.61 12.37
SLM-mix 100 464k 16 17.13 34.35 19.82 15.82 12.62
SLM-hn 100 195k 8 18.90 33.44 18.57 15.58 12.53
LLM 100 108k 8 17.00 29.22 17.11 15.49 11.55
SLM 200 1597k 8 19.71 34.43 18.58 15.12 12.09
SLM-mix 200 928k 16 15.92 31.94 18.48 14.98 12.15
SLM-hn 200 390k 8 17.74 32.30 17.76 14.95 12.13
LLM 200 217k 8 15.58 28.18 15.62 14.03 10.81
SLM 400 3195k 8 19.17 36.61 18.22 14.80 12.00
SLM-mix 400 1000k 16 15.82 31.04 17.56 14.42 11.84
SLM-hn 400 780k 8 16.90 32.54 17.17 14.48 11.86
LLM 400 434k 8 14.54 28.98 15.03 13.05 10.28
SLM-mix 600 1000k 16 15.82 31.03 17.18 14.21 11.73
SLM-hn 600 1170k 8 16.53 32.53 16.95 14.29 11.74
LLM 600 651k 8 14.09 28.62 14.50 12.64 10.07

Table 9: Fraction of data in the most frequent cluster, per
domain.

Domain Num. clusters
4 16 64 256 1024

arxiv 0.95 0.92 0.55 0.52 0.29
europarl 0.52 0.53 0.45 0.44 0.27
freelaw 0.48 0.73 0.87 0.72 0.35
gutenberg 0.75 0.54 0.35 0.27 0.29
opensubtitles 0.97 0.68 0.26 0.28 0.32
openwebtext2 0.53 0.35 0.12 0.04 0.02
pubmed abs. 0.94 0.54 0.41 0.20 0.06
stackexchange 0.95 0.94 0.78 0.61 0.31
wikipedia 0.71 0.58 0.21 0.07 0.03
c4 0.32 0.12 0.04 0.02 0.00

Table 10: Entropy of the cluster histogram for each
domain.

Domain Num. clusters
16 64 256 1024

arxiv 0.41 1.02 1.80 2.58
europarl 1.48 1.83 2.31 3.14
freelaw 1.01 0.70 1.44 2.49
gutenberg 1.57 2.42 3.21 3.85
opensubtitles 1.16 2.61 2.95 3.44
openwebtext2 2.19 3.60 4.89 6.12
pubmed abs. 1.07 2.14 3.22 4.43
stackexchange 0.39 0.97 1.78 3.24
wikipedia 1.73 3.20 4.54 5.64
c4 2.73 4.07 5.46 6.85
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Figure 10: Fine tuning cost as a function of the pretraining cost.

F Parameter Efficient Fine-tuning
We also evaluate Low Rank Adaptation (LoRA) (Hu et al.,
2021) as a fine-tuning method for the LLM. LoRA can help
regularize the fine-tuning process when little specialization
is available. It also reduces the storage and communication
costs of managing many specialized models when address-
ing many domains since only few parameters are learned
for each domain. LoRA does not reduce the pretraining
cost, and even increases the fine-tuning cost as it requires
more fine-tuning steps, with a similar cost per step. In our
LoRA experiments we use low-rank matrices of rank 64
which results in 5M trainable parameters and fine-tune for
up to 5× more steps than for the LLM. We observe that
LLM-lora required from 25% more steps than the LLM for
the 1M token dataset and 3× more steps for the 64M token
dataset. However, since the specialization cost is negligible
in comparison to the pretraining cost these extra steps do
not really impact the overall training cost. Figure 13 reports
the results. LoRA performs very similarly to the LLM (dif-
ferences of less than 0.5 perplexity) and with the exception
of the "large" domain-specific regime of 64M tokens we
can observe some ovefitting mitigation. Finally, LoRA still
results in a large model which is not suitable for the cases
where the computational budget for inference is small.
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Figure 11: Specific perplexity on individual subsets after fine-tuning on 1M tokens.
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Figure 12: Specific perplexity on individual subsets after fine-tuning on 1M tokens.
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Figure 13: Specific perplexity of LoRA fine-tuning on the Pile subsets with respect to the pretraining cost. We
observe that LoRA fine-tuning performs very similarly to traditional fine-tuning with less than 0.5 perplexity
differences.
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