
Arxiv preprint

THE ADEMAMIX OPTIMIZER:

BETTER, FASTER, OLDER

Matteo Pagliardini †

EPFL
Pierre Ablin
Apple

David Grangier
Apple

ABSTRACT

Momentum based optimizers are central to a wide range of machine learning
applications. These typically rely on an Exponential Moving Average (EMA) of
gradients, which decays exponentially the present contribution of older gradients.
This accounts for gradients being local linear approximations which lose their
relevance as the iterate moves along the loss landscape. This work questions the
use of a single EMA to accumulate past gradients and empirically demonstrates
how this choice can be sub-optimal: a single EMA cannot simultaneously give a
high weight to the immediate past, and a non-negligible weight to older gradients.
Building on this observation, we propose AdEMAMix, a simple modification of
the Adam optimizer with a mixture of two EMAs to better take advantage of past
gradients. Our experiments on language modeling and image classification show—
quite surprisingly—that gradients can stay relevant for tens of thousands of steps.
They help to converge faster, and often to lower minima: e.g., a 1.3B parameter
AdEMAMix LLM trained on 101B tokens performs comparably to an AdamW
model trained on 197B tokens (+95%). Moreover, our method significantly slows-
down model forgetting during training. Our work motivates further exploration of
different types of functions to leverage past gradients, beyond EMAs.

1 INTRODUCTION

With large neural networks, deep-learning has revolutionized numerous fields, such as computer
vision and natural language processing. At the heart of this paradigm lies the challenge of optimizing
complex, non-convex loss functions using noisy gradient estimates. This optimization process is
typically carried out using variants of Stochastic Gradient Descent (SGD) (Robbins & Monro, 1951)
or adaptive methods such as Adam and AdamW (Kingma & Ba, 2015; Loshchilov & Hutter, 2019),
which have become ubiquitous in training state-of-the-art models (Devlin et al., 2019; Brown et al.,
2020; Dosovitskiy et al., 2021a; Radford et al., 2021; Zhai et al., 2022; Dehghani et al., 2023; Touvron
et al., 2023; Dubey et al., 2024).

A key component in many of these iterative optimization algorithms is momentum, which has long
been shown to accelerate convergence (Nemirovskii & Nesterov, 1985) and often leads to solutions
with superior generalization properties (Sutskever et al., 2013). By accumulating gradient vectors
over successive optimization steps, momentum helps overcome small local variations of the loss
landscape, potentially escaping shallow local minima, and accelerate in plateau regions (Qian, 1999;
Ruder, 2016; Goh, 2017). Both SGD with momentum (SGD+M) and Adam incorporate momentum

under the form of Exponential Moving Averages (EMAs) of past gradients GT = {g(0), . . . , g(T)}:

EMA(´,GT) ≜ ´ · EMA(´,G(T−1)) + (1− ´)g(T) =

T∑

i=0

´i(1− ´)g(T−i). (EMA)

Two considerations support the use of EMAs. From a practical standpoint, the recursive formula of
EMA allows for efficient implementations, which do not require maintaining a buffer of past gradients.
From a theoretical standpoint, gradient descent with momentum leads to optimal convergence rates
for quadratics (Polyak, 1964; Nesterov, 1983). However, those results do not guarantee any optimality
for general non-quadratic cases (Goujaud et al., 2023).

The use of momentum in optimization is grounded in the varying nature of gradients. As local
linear approximations of the loss landscape, their information can quickly become outdated as the

†Work done while interning at Apple.
1

Arxiv preprint

0 256k 400k 500k

Iterations

2.8

3.0

3.2

3.4

L
o
s
s

AdamW trained on

{17B, 26B, 33B} tokens

AdEMAMix trained on

{17B, 26B, 33B} tokens

(a) 110M parameters.

0 256k 400k 500k

Iterations

2.5

2.6

2.7

2.8

2.9

3.0

3.1

L
o
s
s

AdamW trained on

{25B, 39B, 49B} tokens

AdEMAMix trained on

{25B, 39B, 49B} tokens

(b) 330M parameters.

0 256k 770k 1M

Iterations

2.3

2.4

2.5

2.6

2.7

2.8

L
o
s
s

AdamW 197B

AdamW trained on

{34B, 101B, 131B} tokens

AdEMAMix trained on

{34B, 101B, 131B} tokens

(c) 1.3B parameters.

Figure 1: Comparing AdamW and AdEMAMix on language modeling. In (a,b,c), we plot
the loss obtained using AdamW and AdEMAMix (our optimizer) to train Transformer models of
various sizes on the Redpajama dataset. In (a), we train multiple baselines for 256k, 400k, and 500k
iterations, resulting in processing from 17B to 33B tokens. Two AdamW runs with different number
of iterations look very different as we use a cosine-decay for the learning rate. We compare those
baselines to training AdEMAMix for 256k iterations. We observe that our method reaches a similar
loss as an AdamW model trained on nearly twice the number of tokens. Analogous comparisons
can be derived from (b) and (c). Notably, in (c), a 1.3B parameter AdEMAMix model trained on
101B tokens performs comparably to an AdamW model trained on 197B tokens (95% more, blue
horizontal line). See § 4.1 and App. B.1 for a detailed description of our experimental setup, including
hyperparameters.

optimization process progresses (Pascanu et al., 2013). For this reason, practitioners typically employ
moderate momentum values (i.e. ´ ≈ 0.8 or 0.9), effectively creating a moving average of recent
gradients while discarding older information. Selecting larger ´ values seems counter-intuitive, as
it would suggest that older gradients maintain their relevance over extended periods of training.
While it is tempting to see the use of small ´s as a confirmation of the limited temporal relevance of
gradients, our work reveals instead that older gradients can efficiently be used. When we increase ´,
we decrease the relative importance of recent gradients, and the iterate now fails to respond to local
changes in the loss landscape. We observe that a single EMA cannot both give a significant weight
to recent gradients, and give a non-negligible weight to older gradients (see Fig. 3a). However, a
linear combination between a “fast-changing” (e.g. ´ = 0.9 or ´1 = 0) and a “slow-changing” (e.g.
´ = 0.9999) EMA allows the iterate to beneficiate from (i) the great speedup provided by the larger
(slow-changing) momentum, while (ii) still being reactive to small changes in the loss landscape
(fast-changing). More precisely, we find the following statement to convey an important intuition
behind this approach:

While changing the direction of the slow momentum is difficult, any adjustment orthogonal
to that direction is easy—which favors fast progress in sinuous canyon-like landscapes.

A toy illustration of this can be seen in Fig. 2. Based on this idea, we propose AdEMAMix (Adaptive
EMA Mixture), a novel Adam based optimizer which successfully leverages very old gradients to
reach better solutions.

Contributions. Our contributions can be summarized as follows:

• We propose AdEMAMix, a novel optimizer which better leverages past gradients by avoiding
a common pitfall of EMA-based optimizers (see § 3).

• We empirically demonstrate the superiority of our method over Adam by training ViT and
language models (Transformers and Mamba) of up to 1.3B parameters (see § 4). In addition,
we show gains from switching mid-training from Adam to AdEMAMix (see Fig. 5).

• We show AdEMAMix forgets the training data slower when compared to Adam (see Fig. 4).

• More broadly, our findings contribute to a deeper understanding of the optimal balance
between using historical gradients and adapting to the rapidly changing loss landscape. Our
work invites further research in methods combining old and recent gradients, beyond EMAs.

2

Arxiv preprint

0 2000 4000

Iterations

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

D
is
t
a
n
c
e
t
o
s
o
lu
t
io
n

Adam β2 = 0.999
β1 ∈ {0.9, 0.99, 0.999, 0.9999}

AdEMAMix β1, β2 = 0.9, 0.999
α = 9, β3 ∈ {0.999, 0.9999}

(a) ∥x(t) − x
⋆∥2.

start

Adam β1 = 0.9

Adam β1 = 0.99

Adam β1 = 0.999

Adam β1 = 0.9999

(b) Adam trajectories.

start

AdEMAMix β3 = 0.999

AdEMAMix β3 = 0.9999

(c) AdEMAMix trajectories.

Figure 2: Comparing Adam and AdEMAMix on the Rosenbrock function. Starting from

x(0) = [−3, 5], we minimize the Rosenbrock function f(x1, x2) = (1− x1)
2 +100(x2 − x2

1)
2. The

global minimum (⋆) is x⋆ = [1, 1]. We use ´2 = 0.999 for Adam and (´1, ´2, ³) = (0.9, 0.999, 9)
for AdEMAMix (see § 3). We reduce the learning rate for AdEMAMix to compensate for the
influence of ³. We do a sweep over ´1 (resp. ´3) for Adam (resp. for AdEMAMix). In (b), When
Adam’s ´1 is small (e.g. 0.9), the iterates do not oscillate but convergence is slow. Increasing ´1

makes the iterates move faster but with large oscillations. In contrast, for AdEMAMix in (c), we
observe that despite ´3 being large, the iterates moves fast and without oscillations. This results in
reaching better solutions faster as can be seen in (a).

2 RELATED WORK

Works on understanding momentum. From the seminal work of Polyak (1964), many publications
analyzed the effect of gradient descent + momentum (GD+M) in both convex and non-convex settings
(Ghadimi et al., 2015; Flammarion & Bach, 2015; Kidambi et al., 2018; Defazio, 2020; Sebbouh et al.,
2021). While the acceleration in the noise-free setting has been long theorized for convex functions,
several publications indicate this effect might not necessarily extend to stochastic settings (Yuan et al.,
2016; Kidambi et al., 2018; Leclerc & Madry, 2020), emphasizing instead a link between momentum
and effective learning rate. Recent work have been seeking to understand the impact of momentum
on generalization through studying the implicit bias of momentum methods (Ghosh et al., 2023;
Papazov et al., 2024), exposing a preference of SGD+M for lower norm solutions. Those further
exposed a link between higher momentum and higher effective learning rate and higher variance
reduction. Despite the volume of prior work on the subject, our understanding of momentum methods
in non-convex stochastic settings is still incomplete (Yuan et al., 2016). Oscillatory behaviours, and
the sometimes ambiguous effect of variance on optimization render the analysis tedious. From a
theoretical standpoint, our work raises several questions. First, given that we gain from averaging
very old gradients, what can it reveal of the loss landscape and the consistency of one batch’s gradient
during training? Second, would our approach not decrease the variance up to a point that is harming
generalization (Ghosh et al., 2023)? While no answer to those questions is given in this work, we
provide a toy justification which indicates that large momentums can have a positive impact in
noise-free non-convex settings (see Fig. 2)—indicating the improvement of our approach is at least
partially explainable without considering variance-reduction effects. We moreover expose a link
between momentum and forgetting the training data (see Fig. 4), which to our knowledge is novel.

Works on deep-learning optimizers. Despite the popularity of Adam and AdamW (Kingma & Ba,
2015; Loshchilov & Hutter, 2019) in training deep neural networks, optimizer design is a rich field of
research and we focus on a few of the works most relevant to this study. Adafactor (Shazeer & Stern,
2018) improves Adam’s memory efficiency by factorizing the second moment estimate. Lamb (You
et al., 2020) extends Adam by adding layerwise normalized updates. Chen et al. (2023a) use algorithm
discovery to derive the Lion optimizer. Contrary to Adam, Lion uses a single momentum term and
the sign function to produce updates with the same magnitude across dimensions. Interestingly, Chen
et al. (2023a) also report better scores are obtained when using a slightly larger momentum term
(´ = 0.99). In this work we show how increasing the momentum well beyond this value can still
be beneficial. See App. C.3.2 for a detailed comparison between AdEMAMix and Lion. Recently,

3

Arxiv preprint

Liu et al. (2023) introduced Sophia, a scalable second-order optimizer designed for LLM training.
Sophia uses a Hessian-based pre-conditioner which better normalizes the step size, penalizing steps
in high curvature direction and accelerating in low curvature directions. Understanding in which
circumstances those novel optimizers bring improvements is still being investigated (Kaddour et al.,
2023), and Adam’s dominance remains mostly unchallenged.

Work incorporating an additional momentum term. Lee et al. (2024) introduce Grokfast, which
uses a pre-filtering step on the gradient to amplify the low frequencies and help solve groking. When
combined with Adam, it effectively applies the Adam’s EMAs on top of another gradient averaging
method (e.g. EMA for Grokfast-EMA). Somewhat similarly, Chen et al. (2023b) refer to the Double
EMA (DEMA) used in some finance applications (Mulloy, 1994) as one motivation for their AdMeta
optimizer. Our motivation behind AdEMAMix is to combine both a high sensitivity to the recent
gradients as well as incorporating very distant gradient, in this respect, using nested EMAs is not the
right candidate as it reduces the influence of recent gradients. A more detailed review of AdMeta and
DEMA is in App. C.3.1. Most relevant to us, Lucas et al. (2019, AggMo) also observe that using a
combination of EMAs can enable the use of larger ´s, and incorporates a sum of K momentum terms
into GD They show their approach reaches similar performances as baseline optimizers, with a faster
convergence. In contrast, we modify Adam, and introduce schedulers that are critical to reaching
good performances at larger scales. This allows us to outperform Adam by a significant margin. In
App. C.3.3, we notice no further improvement by adding more momentum terms. Finally, Szegedy
et al. (2024) propose a general framework to derive and study optimizers with linear combinations of
memory vectors—which encompasses EMA mixtures.

Works on distributed optimization. Perhaps surprisingly, recent work on distributed optimization—
DiLoCo and SlowMo (Douillard et al., 2023; Wang et al., 2020)—are relevant to our work. N

workers θ
(t)
1 , . . . ,θ

(t)
N are trained independently for K steps (e.g. K = 500). Every K steps, the

delta updates {∆θi}
N
i=1 ≜ {θ

(t+K)
i − θ

(t)
i }

N
i=1 are averaged and applied to each worker using an

outer optimizer with momentum ´: θ
(t+K)
i = θ

(t)
i − ¸ · Opt(1

N

∑

i ∆θi, ´). The application of
the outer momentum every 500 steps increases the importance of old gradients in the optimization
trajectory. We believe this observation might in parts explain the strong results provided by those
methods, and further motivated our work.

3 OUR METHOD: ADEMAMIX

Setup & notations. Let Lθ : X 7→ R be a loss function parameterized by θ, and mapping inputs
x ∈ X to R. Given a sampled batch x, let g = ∇θLθ(x) be a stochastic gradient of the loss w.r.t.
θ. To minimize the empirical loss, the Adam optimizer (Kingma & Ba, 2015) relies on first and
second moments, resp. m and ν, estimated via two EMAs parametrized by (´1, ´2) ∈ [0, 1[2. A
weight-decay parameter ¼ ∈ R

+ is often used as in Loshchilov & Hutter (2019):















m(t) = ´1m
(t−1) + (1− ´1)g

(t), m̂(t) = m
(t)

1−´t
1

ν(t) = ´2ν
(t−1) + (1− ´2)g

(t)2, ν̂(t) = ν
(t)

1−´t
2

θ(t) = θ(t−1) − ¸
(

m̂
(t)

√
ν̂(t)+ϵ

+ ¼θ(t−1)
)

.

(AdamW)

With t > 0 being the timestep, ¸ being the learning rate, and ϵ a small constant. Initially m(t=0) =
ν(t=0) = 0. To prevent the bias induced by the initial m(t=0) and ν(t=0), the outputs of the two

EMAs are corrected into m̂(t) and ν̂(t). Those are used to compute the final weight update, scaled by
the learning rate.

How far to look into the past? A typical value for ´1 is 0.9. Fig. 3a shows the weights given to past
gradients for different values of ´. The larger the ´, the more uniform the average is. To put this in
perspective—observing that

∑∞

i=0 ´
i(1− ´) = 1 for ´ ∈ [0, 1[—the number of successive previous

steps receiving a cumulative weight of 0.5, is thalf = ln(0.5)
ln(´) − 1. For ´ = 0.9, thalf ≈ 6, meaning

that half of the weight is given to the previous six gradients. This observation can also be extended
to SGD with e.g. polyak or nesterov momentums (Polyak, 1964; Nesterov, 1983), which typically
relies on similar ´ values. The value of ´1 is rarely increased beyond ∼ 0.9. In our experiments
with AdamW, increasing ´1 further degraded the performance (see App. C.1.6). Does this mean

4

Arxiv preprint

0 5000 10000

t

0.0

0.2

0.4

0.6

0.8

1.0
×10

−3

EMA1: β = 0.9

EMA2: β = 0.99

EMA3: β = 0.999

EMA4: β = 0.9999

(a) Limitation of EMAs.

0 500k = Tα,β3
1M 1.3M

Iterations

2.3

2.4

2.5

2.6

2.7

L
o
s
s

AdamW

AdEMAMix β3 = 0.9999

AdEMAMix β3 = 0.99999

100k steps of linear η decay

(b) Constant η-scheduler.

0 64k 128k

Iterations

3.1

3.2

3.3

3.4

3.5

3.6

L
o
s
s

AdamW trained on

{8B, 16B} tokens

AdEMAMix trained on

{8B, 16B} tokens

(c) Mamba results (168M).

Figure 3: Limitation of EMAs, constant ¸-scheduler, & Mamba results. In (a), we plot the

weights wt—for each past gradient g(t)—given by different EMAs after 10k steps. For a given ´,

EMA(´, g(0), . . . , g(T)) =
∑T

i=0 ´
i(1− ´)g(T−i), which decays the contribution of past gradients

exponentially. A small ´ (e.g. 0.9) will give a high weight to the immediate past and negligible
weights to older timesteps. In contrast, a high ´ (e.g. 0.9999) is giving a relatively uniform, yet
non-negligible weight to all gradients. No ´ value can simultaneously give a high weight to the
immediate past and a non-negligible weight to very old timesteps. In (b), we train multiple 1.3B
language models using 3k steps of warmup and then a constant learning rate ¸ = 10−4. This allows
us to observe the gap between AdamW and AdEMAMix without the cosine decay as a confounder.
We still use schedulers for ³ and ´3 with T³,´3

= 500k, ³ = 5. Similar to Zhai et al. (2022); Hu
et al. (2024); Hägele et al. (2024), we decay the learning rate linearly at t = 1M and t = 1.3M. The
loss-gap between AdamW and AdEMAMix increases at first, and then remains constant. AdEMAMix
still outperforms AdamW after decaying the learning rate. See App.C.1.9 to see the impact of the
linear decay duration. In (c), we train 168M parameter Mamba models, showing how AdEMAMix’s
performances can generalize outside of the Transformer architecture.

older gradients are outdated? We show that this is not the case, rather, increasing beta is reducing the
sensitivity to recent gradients too much. We design AdEMAMix such that the sensitivity to recent
gradients is kept, while also incorporating information from much older gradients using an additional
momentum term. This allows for the use of much larger ´ values e.g. 0.9999. To compare, for
´ = 0.9999, thalf ≈ 6,930, spreading half of the mass over the previous 6,930 past gradients.

AdEMAMix. To keep a high sensitivity to recent gradients, while also incorporating information
from older gradients, we add a second EMA (changes compared to AdamW are in Blue):



























m
(t)
1 = ´1m

(t−1)
1 + (1− ´1)g

(t), m̂
(t)
1 =

m
(t)
1

1−´t
1

m
(t)
2 = ´3m

(t−1)
2 + (1− ´3)g

(t)

ν(t) = ´2ν
(t−1) + (1− ´2)g

(t)2, ν̂(t) = ν
(t)

1−´t
2

θ(t) = θ(t−1) − ¸
(

m̂
(t)
1 +³m

(t)
2√

ν̂(t)+ϵ
+ ¼θ(t−1)

)

.

(AdEMAMix)

In our experiments, while the values of ´1, ´2 remain similar to those of equation AdamW, we often
use ´3 = 0.9999. We find ³ ∈ [4, 10] to work well in practice.

Tackling early training instabilities. Early training instabilities are commonplace when training
deep models, and empirically motivated the introduction of methods such as learning rate warmup
and gradient clipping. Gilmer et al. (2022) show how the use of learning rate warmup can be justified
from a curvature perspective; allowing the iterates to move to parts of the optimization landscape
where larger learning rates are stable. While we use learning rate warmup in all our experiments,
we still noticed AdEMAMix models using a large ´3 would diverge early. This, despite not using
bias correction over m2, which lets the momentum buffer fill itself slowly. Those failed runs are
characterized by updates of large magnitudes in the early phase of training (see App. C.1.9, Fig. 27).
For this reason, we progressively increase the values of ´3 and ³ using schedulers. For ³ we use
a linear scheduler. A linear scheduler for ´3 would be ill-fitted as the same increment of ´3 has a

5

Arxiv preprint

different impact for different values of ´3. For instance, observe that an increase of ´ of ¶´ = 0.0001
barely increases the thalf for ´ = 0.9, while 0.999→ 0.999 + ¶´ increases the thalf of 77. For this
reason, we design the ´3 scheduler to increase thalf linearly (see App. A.1 for a derivation of that
scheduler). The two schedulers are summarized below:

³(t) = f³(t, ³, T³) = min(
t³

T³

, ³), (f³)

´
(t)
3 = f´3

(t, ´3, ´start, T´3
) = min

(

exp
(ln(´start) ln(´3)

(1− t
Tβ3

) ln(´3) +
t

Tβ3
ln(´start)

)

, ´3

)

. (f´3
)

With T³ and T´3
are resp. the warmup times for ³(t) and ´

(t)
3 to reach their final and maximal values.

In practice we always set those two to the same value: T³ = T´3
= T³,´3

, and we typically use
T³,´3

= T , with T being the total number of iterations. ´start is always set to ´1 in our experiments.
The use of those schedulers is not always required, especially, we found those have no impact when
AdEMAMix is activated later during training (see Fig. 5). The full AdEMAMix optimizer, including
the schedulers, is shown in Alg. 1.

Algorithm 1 AdEMAMix optimizer. Differences with AdamW are in blue.

1: Input: Data distribution D. Initial model parameters θ(0). Number of iterations T . Learning
rate ¸. ϵ a small constant. AdamW parameters: ´1, ´2 and ¼. AdEMAMix parameters ´3, ³.
Warmup parameter T³,´3

, note that we usually set it to T . ´start is usually set to ´1.
2: Initialize timestep: t← 0

3: Initialize EMAs: m
(0)
1 ← 0 , m

(0)
2 ← 0 , ν(0) ← 0

4: for t ∈ [T] do
5: t← t+ 1
6: Optional: use schedulers ¸(t), ´

(t)
3 ← f´3(t, ´3, ´start, T³,´3) and ³(t) ← f³(t, ³, T³,´3)

7: Sample batch: x ∼ D
8: Compute gradient: g(t) ← ∇θLθ(t−1)(x)

9: Update the fast EMA m1: m
(t)
1 ← ´1m

(t−1)
1 + (1− ´1)g

(t)

10: Update the slow EMA m2: m
(t)
2 ← ´

(t)
3 m

(t−1)
2 + (1− ´

(t)
3)g(t)

11: Update the second moment estimate: ν(t) ← ´2ν
(t−1) + (1− ´2)g

(t)2

12: Apply bias corrections: m̂
(t)
1 ←

m
(t)
1

1−´t
1

, ν̂
(t)
1 ←

ν
(t)
1

1−´t
2

13: Update parameters: θ(t) ← θ(t−1) − ¸(t)
(

m̂
(t)
1 +³(t)

m
(t)
2√

ν̂(t)+ϵ
+ ¼θ(t−1)

)

14: end for
15: Return optimized parameters θ(T)

Using ´1 = 0 to save memory. By setting ´1 = 0, we can save on memory by replacing m̂
(t)
1 by

g(t). In this case, the memory cost of AdEMAMix is the same as for AdamW. We show in App. C.1.4
(Fig. 15b) and App. C.1.7 that using ´1 = 0 often works, at the cost of potentially less stable training.

Computational overheads. Adding an additional EMA requires additional memory and compute.
The added compute is negligible in comparison to what is required for the forward-backward, and
has little impact over the total runtime as shown in Fig. 5a. Moreover—when considering larger
distributed setups—it is worth noting that AdEMAMix is not increasing communication (gradient
reduction) over Adam. Therefore, we expect the runtime overhead of AdEMAMix to shrink in those
settings, as data movements occupy a larger fraction of the total runtime. A more significant overhead
is in terms of memory when ´1 ̸= 0, as AdEMAMix requires to allocate both m1 and m2, which
are of the same size as the model parameters θ. We believe this issue is of lesser consequences
as Fully-Sharded-Data-Paralellism (Zhao et al., 2023, FSDP) can always be used to distribute the
optimizer states across compute nodes. In the cases where memory remains an issue, one mitigation
strategy could be to apply factorization strategies as in Shazeer & Stern (2018); Zhao et al. (2024).

Hyperparameter sensitivity. While we introduce up to four new hyperparameters: ³, ´3, T³, and
T´3

, in practice we always set T³ = T´3
= T³,´3

, and use T³,´3
= T in most cases. We show in

App. C.1.4 that T³ and T´3 should only be large enough to prevent instabilities early during training.

6

Arxiv preprint

90k 256k

2.8

2.9

3.0

3.1

3.2

L
o
s
s
o
n
b
a
t
c
h
B

90k 256k

2.8

2.9

3.0

3.1

3.2

L
o
s
s
o
n
b
a
t
c
h
B

(a) tB = 90k.

70k 170k 256k

70k 170k 256k

(b) tB = 170k.

70k 190k 256k

70k 190k 256k

(c) tB = 190k.

70k 230k

AdamW training
without B

AdamW training
using B at t = tB

tB

70k 230k

AdEMAMix training
without B

AdEMAMix training
using B at t = tB

tB

(d) tB = 230k.

Figure 4: Measuring forgetting using a held-out batch B. The top row is for AdamW, the bottom
row is for AdEMAMix. We trained one AdamW and AdEMAMix model on a RedPajama dataset
not containing the batch B, those runs are in blue. We then run multiple experiments where we
inject B in the training data at a specific timestep tB . Those runs are in orange. To inspect how
much influence B had when it is injected at tB , we can observe the evolution of the gap between
the blue and the orange curves. For both optimizers, we observe a rapid decrease of the loss on B
right after training on B. The sharpness of this decrease in loss is more pronounced for AdamW
compared to AdEMAMix. However, when using AdamW, the loss on B then increases faster, which
we interpret as the model forgetting B faster. In contrast, the curves for AdEMAMix are smoother,
the loss on B goes back up slower, and ultimately B had a bigger impact on the training when using
AdEMAMix—as can be seen by looking at the larger gap between the orange and blue curves for
the last iteration. Finally, the forgetting behaviour evolve during training, with the later training
batches being remembered better. See App. C.1.2 for a more detailed analysis of forgetting as training
progresses.

While all of our experiments on language modeling use ´3 = 0.9999, other values such as 0.999 or
even 0.99999 still can outperform the AdamW baseline (see App. C.1.4, Fig. 12). On vision tasks,
the scatter plots in Fig. 6 show all the AdEMAMix models trained for those experiments, highlighting
how easy it can be to find good ³ and ´3 values. Overall, we find the ranges of values of ³, ´3 and
T³,´3 providing improvements over AdamW to be wide. See App. C.1.4 for hyperparameter sweeps.

Limitations. AdEMAMix consists in leveraging very old gradients. Therefore, the method is best
suited to settings where the number of iterations is important. We report on this effect in App. C.1.5,
additionally showing how smaller values of ´3 (e.g. ´3 = 0.999) can be better for low iterations
scenarios. Moreover, retaining gradient information over many thousands steps can pose a problem
in domains requiring fast adaptation to a sudden distribution shift.

4 RESULTS

In this section we use AdEMAMix to train language models (§ 4.1 and § 4.2) and vision transformers
(§ 4.3) ranging from 24M to 1.3B parameters.

4.1 TRANSFORMER LLM TRAINING

Experimental setup. We use a transformer architecture (Vaswani et al., 2017) with learnt positional
encoding. All of our experiments are using sequences of 1,024 tokens. We experiment with three
sizes of transformers: 110M, 335M, and 1.3B. For the learning rate, we use 3k warmup steps followed
by—unless specified—a cosine decay to 10−5. We extensively tuned the hyperparameters for both
AdamW and AdEMAMix models (see App. B.1). We use the RedPajama v2 (Computer, 2023)

7

Arxiv preprint

110M 1.3B
20

30

40

50

60

T
ra
in
in
g
ti
m
e
(h
o
u
rs
)

AdamW

AdEMAMix

(a) Train time for 256k iters.

300k 390k 500k

Iterations

2.8

2.9

3.0

3.1

L
o
s
s

AdamW 33B tokens

AdEMAMix from 300k

AdEMAMix from 330k

AdEMAMix from 360k

AdEMAMix from 390k

AdEMAMix from 0

(b) From AdamW (110M).

500k 600k 770k

Iterations

2.25

2.30

2.35

2.40

2.45

2.50

2.55

L
o
s
s

AdamW 1M iterations

AdamW 101B tokens

AdEMAMix from 500k

AdEMAMix from 600k

AdEMAMix from 0

(c) From AdamW (1.3B).

Figure 5: Training time comparison & starting AdEMAMix from AdamW. In (a), we compare
the time required to train 110M and 1.3B parameter models for 256k iterations. The additional EMA
renders AdEMAMix slightly slower than AdamW. However, if we were to train AdamW longer to
compensate for this gap, we would only train for an additional 2379 and 5421 iterations for resp.
110M and 1.3B parameter models. Those additional iterations would not be sufficient to close the
gap (see Fig. 1). In (b) and (c), we show—for two different model sizes—the effect of switching
from AdamW to AdEMAMix during training. AdEMAMix’s additional parameter m2 is initialized
to 0, no scheduler is used for ³ or ´3. For both model sizes, we observe the loss increases slightly at
first before decreasing and outperforming the baseline. In both cases, the earlier AdEMAMix is used,
the better the final loss. See App. C.1.9 for results using schedulers.

dataset for all of our experiments. We use batch sizes of 64, 96 and 128 for respectively our 110M,
335M, and 1.3B parameter models. Depending on the model, we vary the number of iterations from
256k to 1.5M. For AdEMAMix, we use ´3 = 0.9999 and ³ ∈ {5, 8, 10} depending on the model.
A full description of the architecture and hyperparameters used is in App. B.1. We train on up to 8
A100 NVIDIA GPUs using data-parallelism.

Why not simply increasing AdamW’s ´1? While our toy experiment in Fig. 2 already gives some
intuition on why increasing Adam’s ´1 is likely not to have the same effect as having an additional
EMA as in AdEMAMix, we verify this intuition by training multiple 110M models using Adam with
large ´1 ∈ {0.99, 0.999, 0.9999, 0.99999}. When we use a large ´1 from the beginning of training,
we observe instabilities for larger ´1 values and no ´1 > 0.9 improves upon the AdamW baseline.
One can imagine this to be due to increasing ´1 too early. Therefore, we also modify AdamW and add
the same scheduler on ´1 as we use on AdEMAMix’s ´3. ´1 is now increased steadily over the entire
training duration. While this mostly stabilizes the training, none of the experiments outperformed
the baseline using ´1 = 0.9. Moreover, to rule out any effect that could be due to early training
instabilities, we run the same experiments starting from a pre-trained AdamW checkpoint trained
for 300k iterations. We simply resume training and either increase ´1 suddenly or using a scheduler.
Here again—unlike when using AdEMAMix—none of those experiments outperform the baseline.
The details of those experiments are available in App. C.1.6. Those experiments show that simply
increasing the ´1 value in AdamW is not enough, which justifies our design of AdEMAMix.

Better perplexity for the same number of steps. For all model sizes, all the number of iterations
used—ranging from 256k to 1M—, AdEMAMix always outperforms the AdamW baseline. In
Fig. 1, we show the validation loss curves for AdamW and AdEMAMix models trained—for each
size—on various numbers of tokens. For 110M parameter models, training for 256k iterations gives
similar results as training an AdamW model for 500k iterations. The gap between baseline and our
method seems to be increasing as we increase the number of iterations. For 1.3B parameter models,
training using 770k steps is on par with training the baseline for 1.5M iterations—reaching the same
performance with 51% fewer tokens (an economy of 96M tokens). In Fig. 3b, we observe similar
improvements when using a constant and then linear decay learning rate scheduler.

Training speed comparison. We measure the time per iteration for all of our experiments. In Fig. 5a
we plot the time required to train our 110M and 1.3B parameter models for 256k iterations. We
observe that the impact of using an additional EMA on the training speed is negligible. If we were to

8

Arxiv preprint

train new models with a fix time budget, the extra iterations of the baseline would not be sufficient
to close the gap. For instance, to match a 110M parameter AdEMAMix model trained for 256k
iterations, we need to train an AdamW model for 500k iterations, and the time advantage of AdamW
would only allow us to do 2,379 additional iterations. Moreover, as mentioned in § 3, we expect
the time overhead to decrease when multi-node training is used, as IOs would become an important
bottleneck, and AdEMAMix is not increasing IOs.

Consistency of the gain across token-budgets. In Fig. 1, given that enough tokens have been used
w.r.t. the model size, we observe consistent gains accross token budgets. It seems our method is able
to bring a constant improvement over the baseline. This can be seen more clearly in Fig. 3b, showing
results when using a constant learning rate scheduler—which removes the confounder of the cosine
learning rate decay. We observe how, after an initial phase in which the gap grows, this gap becomes
seemingly constant after a sufficient number of iterations.

Resume from AdamW vs. training AdEMAMix from scratch. So far we trained AdEMAMix
models from scratch. We show it is also possible to switch from an AdamW to an AdEMAMix state in

the middle of training. When switching to AdEMAMix at step tswitch, we initialize m
(tswitch)
2 = 0

and replace t by t − tswitch in the scheduler equations—if those are used. However, we find that
schedulers are not required when resuming training and report results without them in the main paper
(see App. C.1.9 for more details). In Fig 5b and Fig.5c, we show that (i) it is possible to improve
upon the baseline when activating AdEMAMix later during training, and (ii) the earlier the switch,
the larger the gain, with diminishing returns. This indicates that the improvement of AdEMAMix
cannot be attributed solely to early training dynamics, but rather, late training dynamics seem to play
an important role. This is further corroborated by the reverse experiment—which switches from
AdEMAMix to AdamW mid-training and show a performance degradation (see results in App. C.1.3).

AdEMAMix models forget the training data slower. As an attempt to understand the reason for
AdEMAMix’s improvements over AdamW, we study how fast a training batch is forgotten after
being used during training. We focus on following one specific batch B. We start by removing B
from the RedPajama training data and train AdamW and AdEMAMix models. For those runs, B is
therefore akin to a batch from the validation set. We measure the loss on B while training. Now we
can resume training from various checkpoints, and inject B into the training data at various times
tB . By comparing the two runs—one having trained on B, while the other never saw B—we can
visualize how B is learned, and how it is forgotten. After training on B, we expect the loss on B
to decrease suddenly and then increase as the model forgets the contribution of that batch. When
comparing the forgetting curves for AdamW and AdEMAMix in Fig. 4, we see striking differences.
AdamW models forget much faster—the loss over B increases faster—than AdEMAMix models.
Moreover, at the end of training, batches processed by AdEMAMix see their loss being improved
over many thousands of iterations. Additional experiments on forgetting can be found in App. C.1.2.

4.2 MAMBA LM TRAINING

Experimental setup & results. Our experimental setup is similar to § 4.1, except that we now train
168M parameter Mamba models (Gu & Dao, 2023) using the FineWeb dataset (Penedo et al., 2024).
See App. B.2 for more details. In Fig. 3c the improvement using AdEMAMix is consistent with
our experiments on Transformer models. This shows how AdEMAMix’s gains can extend beyond
Transformer models.

4.3 VIT TRAINING

Experimental setup. In this section we consider a different setting in which the data is now a
limited resource, and we do multiple epochs (e.g. 37 or 320). We use two subsets of the ImageNet
(Russakovsky et al., 2015) dataset: (i) the widely used ImageNet-1k subset, consisting of 1.3M images
and 1,000 possible classes; (ii) a filtered and pre-processed version of the ImageNet-21k (Ridnik
et al., 2021) containing 11M images corresponding to 10,450 classes. For each, we measure the test
loss on a held-out test set. We use the ViT architecture (Dosovitskiy et al., 2021b) at two different
scales: 24M and 86M parameters. Importantly, if it is common in the vision literature to pre-train
large ViT models and finetune them on smaller datasets, this work focuses on pretraining optimization
and we therefore train and test on the same distribution. The models’ hyperparameters are detailed in
App. B.3, we use a batch size of 4096 for all our experiments. We used training hyperparameters

9

Arxiv preprint

2.1 2.2 2.3

Training loss

2.40

2.45

2.50

2.55

2.60

T
es
t
lo
ss

AdamW

AdEMAMix β3 = 0.999

AdEMAMix β3 = 0.9999

(a) 24M params, 11M images.
(ImageNet-21k)

1.6 1.8 2.0

Training loss

2.20

2.25

2.30

2.35

2.40

2.45

T
es
t
lo
ss

AdamW

AdEMAMix β3 = 0.999

AdEMAMix β3 = 0.9999

(b) 86M params, 11M images.
(ImageNet-21k)

0.1 0.2 0.3

Training loss

0.9

1.0

1.1

1.2

1.3

T
es
t
lo
ss

AdamW

AdEMAMix β3 = 0.999

AdEMAMix β3 = 0.9999

(c) 86M params, 1.3M images.
(ImageNet-1k)

Figure 6: ViT results for different capacity/data ratio. As described in § 4.3, we compare the
train vs. test loss between AdEMAMix and AdamW, on multiple scenarios (a,b,c). Those have
different capacity/data ratios. For each setting, we first tune an AdamW baseline by testing multiple
hyperparameters, those are represented by blue dots. We then pick the hyperparameters of the
best baseline—corresponding to the lowest test loss—and train multiple AdEMAMix models by
simply testing various ³ ∈ {1, 5, 10, 15, 20} and ´3 ∈ {0.999, 0.9999}. Those are represented by
orange squares and red triangles. See App. B.3 for detailed hyperparameters. The red area in the
above plots represents the area in which we achieve both a better training and test loss compared to
the best baseline. The diagonal black line represents the line we would follow when we improve
upon the baseline without adding any overfitting (i.e. an improvement in train loss yields the same
improvement in test loss). (a) represents the most desirable setting, in which we have relatively a
lot of data compared to the model size. In this setting, AdEMAMix outperforms the baseline for all
hyperparameters tested. If we increase the model size as in (b), most AdEMAMix hyperparameters
are improving upon the baseline. If we now decrease the dataset size, using a 86M model with
1.3M images as in (c), doing a total of 320 epochs, we do not observe an improvement from using
AdEMAMix. See App. C.2 to see classification accuracies and loss curves for those experiments.

from Dosovitskiy et al. (2021b) as a starting point and did some additional tuning of the learning-rate,
dropout, and weight decay for our AdamW baselines. We then use the hyperparameters of the
best AdamW baseline and train AdEMAMix models with various values of ³ ∈ {1, 5, 10, 15, 20}
and ´3 ∈ {0.999, 0.9999}. We train models for 320 and 37 epochs for resp. the ImageNet-1k
and ImageNet-21k datasets, corresponding in both cases to 100k iterations. Data-augmentation
techniques have been shown to be central to the efficient training of ViTs Touvron et al. (2021; 2022).
We use simple data-augmentations, which includes mixup (Zhang et al., 2018). We train on 8 A100
NVIDIA GPUs using Pytorch Fully Sharded Data-Parallelism (Zhao et al., 2023, FSDP).

AdEMAMix for different capacity/data ratios. We consider three scenarios that differ by their
capacity/data ratios. First, we trained 24M parameter models on 11M images (ImageNet-21k), for
37 epochs. In this setting, as can be seen in Fig. 6a, it is trivial to find AdEMAMix parameters
outperforming the baseline in terms of both training and test accuracy. We now increase the model
size to 86M parameters. Fig. 6b shows it is still easy to find parameters outperforming the baseline.
We now keep the model size of 86M parameters and switch to the smaller ImageNet-1k dataset
(1.3M images), which—given our 100k iterations—increases the number of epochs to 320. In this
setting, Fig. 6c shows that outperforming the baseline becomes difficult. These experiments show
how AdEMAMix seems to perform best in scenarios with large volumes of data w.r.t. the capacity of
the model. Overall, we found AdEMAMix to consistently reduce the training loss more efficiently
than AdamW. When this decrease in training loss correlates with a decrease in test loss, AdEMAMix
outperforms the AdamW baseline.

5 CONCLUSION

In this work, we find that old gradients can be leveraged to efficiently train large language models
and ViTs. Our proposed optimizer combines two momentum terms. A slow (large ´) momentum

10

Arxiv preprint

gathers information over many timestep, while a fast (low ´) momentum can adapt the trajectory of
the iterates to the rapidly changing loss landscape. We demonstrate the superiority of our optimizer
over AdamW through a set of experiments on text modeling and image classification. We moreover
reveal how our optimizer forgets the training data at a slower pace.

6 ACKNOWLEDGEMENTS

We thank Alaaeldin Mohamed Elnouby Ali for guiding us throughout the training of our ViT models,
as well as Federico Danieli and Abhinav Moudgil for their help training Mamba models. We also
thank Angelos Katharopoulos and Ronan Collobert for their insightful comments and feedback.

REFERENCES

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh
Hajishirzi. Mathqa: Towards interpretable math word problem solving with operation-based
formalisms. In NAACL-HLT (1), pp. 2357–2367. Association for Computational Linguistics, 2019.

Sumithra Bhakthavatsalam, Daniel Khashabi, Tushar Khot, Bhavana Dalvi Mishra, Kyle Richardson,
Ashish Sabharwal, Carissa Schoenick, Oyvind Tafjord, and Peter Clark. Think you have solved
direct-answer question answering? try arc-da, the direct-answer AI2 reasoning challenge. CoRR,
abs/2102.03315, 2021.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning about
physical commonsense in natural language. In AAAI, pp. 7432–7439. AAAI Press, 2020.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He,
Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu
Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. Gpt-neox-20b: An
open-source autoregressive language model. CoRR, abs/2204.06745, 2022.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In NeurIPS, 2020.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V. Le. Symbolic discovery of optimization
algorithms. In NeurIPS, 2023a.

Yineng Chen, Zuchao Li, Lefei Zhang, Bo Du, and Hai Zhao. Bidirectional looking with A novel
double exponential moving average to adaptive and non-adaptive momentum optimizers. In ICML,
volume 202 of Proceedings of Machine Learning Research, pp. 4764–4803. PMLR, 2023b.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In NAACL-HLT
(1), pp. 2924–2936. Association for Computational Linguistics, 2019.

Together Computer. Redpajama: an open dataset for training large language models, October 2023.
URL https://github.com/togethercomputer/RedPajama-Data.

DeepMind, Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter
Buchlovsky, David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Antoine Dedieu, Clau-
dio Fantacci, Jonathan Godwin, Chris Jones, Ross Hemsley, Tom Hennigan, Matteo Hessel,
Shaobo Hou, Steven Kapturowski, Thomas Keck, Iurii Kemaev, Michael King, Markus Kunesch,
Lena Martens, Hamza Merzic, Vladimir Mikulik, Tamara Norman, George Papamakarios, John
Quan, Roman Ring, Francisco Ruiz, Alvaro Sanchez, Laurent Sartran, Rosalia Schneider,
Eren Sezener, Stephen Spencer, Srivatsan Srinivasan, Miloš Stanojević, Wojciech Stokowiec,
Luyu Wang, Guangyao Zhou, and Fabio Viola. The DeepMind JAX Ecosystem, 2020. URL
http://github.com/google-deepmind.

11

https://github.com/togethercomputer/RedPajama-Data
http://github.com/google-deepmind

Arxiv preprint

Aaron Defazio. Understanding the role of momentum in non-convex optimization: Practical insights
from a lyapunov analysis. CoRR, abs/2010.00406, 2020. URL https://arxiv.org/abs/

2010.00406.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, Rodolphe Jenat-
ton, Lucas Beyer, Michael Tschannen, Anurag Arnab, Xiao Wang, Carlos Riquelme Ruiz, Matthias
Minderer, Joan Puigcerver, Utku Evci, Manoj Kumar, Sjoerd van Steenkiste, Gamaleldin Fathy
Elsayed, Aravindh Mahendran, Fisher Yu, Avital Oliver, Fantine Huot, Jasmijn Bastings, Mark
Collier, Alexey A. Gritsenko, Vighnesh Birodkar, Cristina Nader Vasconcelos, Yi Tay, Thomas
Mensink, Alexander Kolesnikov, Filip Pavetic, Dustin Tran, Thomas Kipf, Mario Lucic, Xiaohua
Zhai, Daniel Keysers, Jeremiah J. Harmsen, and Neil Houlsby. Scaling vision transformers to
22 billion parameters. In ICML, volume 202 of Proceedings of Machine Learning Research, pp.
7480–7512. PMLR, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT (1), pp. 4171–4186.
Association for Computational Linguistics, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In ICLR. OpenReview.net, 2021a.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In ICLR. OpenReview.net, 2021b.

Arthur Douillard, Qixuang Feng, Andrei A. Rusu, Rachita Chhaparia, Yani Donchev, Adhiguna
Kuncoro, Marc’Aurelio Ranzato, Arthur Szlam, and Jiajun Shen. Diloco: Distributed low-
communication training of language models. CoRR, abs/2311.08105, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron,
Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme Nail,
Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo
Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan Evtimov,
Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer
van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang,
Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua
Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani, Kate Plawiak,
Ke Li, Kenneth Heafield, and Kevin Stone. The llama 3 herd of models. CoRR, abs/2407.21783,
2024.

Nicolas Flammarion and Francis R. Bach. From averaging to acceleration, there is only a step-size.
In COLT, volume 40 of JMLR Workshop and Conference Proceedings, pp. 658–695. JMLR.org,
2015.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 12 2023. URL https://zenodo.org/records/10256836.

12

https://arxiv.org/abs/2010.00406
https://arxiv.org/abs/2010.00406
https://zenodo.org/records/10256836

Arxiv preprint

Euhanna Ghadimi, Hamid Reza Feyzmahdavian, and Mikael Johansson. Global convergence of the
heavy-ball method for convex optimization. In ECC, pp. 310–315. IEEE, 2015.

Avrajit Ghosh, He Lyu, Xitong Zhang, and Rongrong Wang. Implicit regularization in heavy-ball
momentum accelerated stochastic gradient descent. In ICLR. OpenReview.net, 2023.

Justin Gilmer, Behrooz Ghorbani, Ankush Garg, Sneha Kudugunta, Behnam Neyshabur, David
Cardoze, George Edward Dahl, Zachary Nado, and Orhan Firat. A loss curvature perspective on
training instabilities of deep learning models. In International Conference on Learning Represen-
tations, 2022. URL https://openreview.net/forum?id=OcKMT-36vUs.

Gabriel Goh. Why momentum really works. Distill, 2017. doi: 10.23915/distill.00006. URL
http://distill.pub/2017/momentum.

Akhilesh Gotmare, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. A closer look
at deep learning heuristics: Learning rate restarts, warmup and distillation. In ICLR (Poster).
OpenReview.net, 2019.

Baptiste Goujaud, Adrien Taylor, and Aymeric Dieuleveut. Provable non-accelerations of the heavy-
ball method. arXiv preprint arXiv:2307.11291, 2023.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Alexander Hägele, Elie Bakouch, Atli Kosson, Loubna Ben Allal, Leandro von Werra, and Mar-
tin Jaggi. Scaling laws and compute-optimal training beyond fixed training durations. CoRR,
abs/2405.18392, 2024.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, Xinrong Zhang, Zhen Leng Thai, Kai Zhang, Chongyi Wang, Yuan
Yao, Chenyang Zhao, Jie Zhou, Jie Cai, Zhongwu Zhai, Ning Ding, Chao Jia, Guoyang Zeng,
Dahai Li, Zhiyuan Liu, and Maosong Sun. Minicpm: Unveiling the potential of small language
models with scalable training strategies. CoRR, abs/2404.06395, 2024.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W. Cohen, and Xinghua Lu. Pubmedqa: A
dataset for biomedical research question answering. In EMNLP/IJCNLP (1), pp. 2567–2577.
Association for Computational Linguistics, 2019.

Jean Kaddour, Oscar Key, Piotr Nawrot, Pasquale Minervini, and Matt J. Kusner. No train no gain:
Revisiting efficient training algorithms for transformer-based language models. In NeurIPS, 2023.

Rahul Kidambi, Praneeth Netrapalli, Prateek Jain, and Sham M. Kakade. On the insufficiency of
existing momentum schemes for stochastic optimization. In ICLR. OpenReview.net, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR (Poster),
2015.

Taku Kudo and John Richardson. SentencePiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. In Eduardo Blanco and Wei Lu (eds.), Pro-
ceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, pp. 66–71, Brussels, Belgium, November 2018. Association for Computational
Linguistics. doi: 10.18653/v1/D18-2012. URL https://aclanthology.org/D18-2012.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Raghavi
Chandu, Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, Noah A. Smith, and Hannaneh Ha-
jishirzi. Rewardbench: Evaluating reward models for language modeling. CoRR, abs/2403.13787,
2024.

Guillaume Leclerc and Aleksander Madry. The two regimes of deep network training. CoRR,
abs/2002.10376, 2020.

Jaerin Lee, Bong Gyun Kang, Kihoon Kim, and Kyoung Mu Lee. Grokfast: Accelerated grokking by
amplifying slow gradients. CoRR, abs/2405.20233, 2024.

13

https://openreview.net/forum?id=OcKMT-36vUs
http://distill.pub/2017/momentum
https://aclanthology.org/D18-2012

Arxiv preprint

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. In ACL (1), pp. 3214–3252. Association for Computational Linguistics, 2022.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. CoRR, abs/2305.14342, 2023.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: A challenge
dataset for machine reading comprehension with logical reasoning. In IJCAI, pp. 3622–3628.
ijcai.org, 2020.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR (Poster).
OpenReview.net, 2019.

James Lucas, Shengyang Sun, Richard S. Zemel, and Roger B. Grosse. Aggregated momentum:
Stability through passive damping. In ICLR (Poster). OpenReview.net, 2019.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? A new dataset for open book question answering. In EMNLP, pp. 2381–2391.
Association for Computational Linguistics, 2018.

Patrick G. Mulloy. Smoothing data with faster moving averages. Technical Analysis of Stocks and
Commodities Magazine, 12, 1994.

Arkaddii S Nemirovskii and Yu E Nesterov. Optimal methods of smooth convex minimization. USSR
Computational Mathematics and Mathematical Physics, 25(2):21–30, 1985.

Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of
convergence o(1/k2). In Doklady Akademii Nauk SSSR, 1983. URL https://api.

semanticscholar.org/CorpusID:202149403.

Hristo Papazov, Scott Pesme, and Nicolas Flammarion. Leveraging continuous time to understand
momentum when training diagonal linear networks. In AISTATS, volume 238 of Proceedings of
Machine Learning Research, pp. 3556–3564. PMLR, 2024.

Razvan Pascanu, Tomás Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In ICML (3), volume 28 of JMLR Workshop and Conference Proceedings, pp. 1310–1318.
JMLR.org, 2013.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In NeurIPS, pp. 8024–8035, 2019.

Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the
finest text data at scale, 2024. URL https://arxiv.org/abs/2406.17557.

B.T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR Com-
putational Mathematics and Mathematical Physics, 3(4):864–878, 1964. ISSN 0041-5553.
doi: https://doi.org/10.1016/0041-5553(63)90382-3. URL https://www.sciencedirect.

com/science/article/pii/0041555363903823.

Ning Qian. On the momentum term in gradient descent learning algorithms. Neu-
ral Networks, 12(1):145–151, 1999. ISSN 0893-6080. doi: https://doi.org/10.
1016/S0893-6080(98)00116-6. URL https://www.sciencedirect.com/science/

article/pii/S0893608098001166.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In ICML, volume 139 of
Proceedings of Machine Learning Research, pp. 8748–8763. PMLR, 2021.

14

https://api.semanticscholar.org/CorpusID:202149403
https://api.semanticscholar.org/CorpusID:202149403
https://arxiv.org/abs/2406.17557
https://www.sciencedirect.com/science/article/pii/0041555363903823
https://www.sciencedirect.com/science/article/pii/0041555363903823
https://www.sciencedirect.com/science/article/pii/S0893608098001166
https://www.sciencedirect.com/science/article/pii/S0893608098001166

Arxiv preprint

Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. Imagenet-21k pretraining for
the masses, 2021.

H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical Statistics,
22:400–407, 1951.

Sebastian Ruder. An overview of gradient descent optimization algorithms. CoRR, abs/1609.04747,
2016.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. In AAAI, pp. 8732–8740. AAAI Press, 2020.

Othmane Sebbouh, Robert M. Gower, and Aaron Defazio. Almost sure convergence rates for
stochastic gradient descent and stochastic heavy ball. In COLT, volume 134 of Proceedings of
Machine Learning Research, pp. 3935–3971. PMLR, 2021.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In ICML, volume 80 of Proceedings of Machine Learning Research, pp. 4603–4611. PMLR, 2018.

Guijin Son, Hanwool Lee, Sungdong Kim, Seungone Kim, Niklas Muennighoff, Taekyoon Choi,
Cheonbok Park, Kang Min Yoo, and Stella Biderman. KMMLU: measuring massive multitask
language understanding in korean. CoRR, abs/2402.11548, 2024.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization
and momentum in deep learning. In Sanjoy Dasgupta and David McAllester (eds.), Proceedings of
the 30th International Conference on Machine Learning, volume 28 of Proceedings of Machine
Learning Research, pp. 1139–1147, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR. URL
https://proceedings.mlr.press/v28/sutskever13.html.

Balázs Szegedy, Domonkos Czifra, and Péter Kőrösi-Szabó. Dynamic memory based adaptive
optimization, 2024. URL https://arxiv.org/abs/2402.15262.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In ICML,
volume 139 of Proceedings of Machine Learning Research, pp. 10347–10357. PMLR, 2021.

Hugo Touvron, Matthieu Cord, and Hervé Jégou. Deit III: revenge of the vit. In ECCV (24), volume
13684 of Lecture Notes in Computer Science, pp. 516–533. Springer, 2022.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, pp. 5998–6008, 2017.

Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael G. Rabbat. Slowmo: Improving
communication-efficient distributed SGD with slow momentum. In ICLR. OpenReview.net,
2020.

15

https://proceedings.mlr.press/v28/sutskever13.html
https://arxiv.org/abs/2402.15262
https://arxiv.org/abs/2307.09288

Arxiv preprint

Johannes Welbl, Nelson F. Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
In NUT@EMNLP, pp. 94–106. Association for Computational Linguistics, 2017.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. Huggingface’s
transformers: State-of-the-art natural language processing. CoRR, abs/1910.03771, 2019.

Yang You, Jing Li, Sashank J. Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training BERT in 76 minutes. In ICLR. OpenReview.net, 2020.

Kun Yuan, Bicheng Ying, and Ali H. Sayed. On the influence of momentum acceleration on
online learning. Journal of Machine Learning Research, 17(192):1–66, 2016. URL http:

//jmlr.org/papers/v17/16-157.html.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In ACL (1), pp. 4791–4800. Association for Computational Linguistics,
2019.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In CVPR, pp. 1204–1213. IEEE, 2022.

Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In ICLR (Poster). OpenReview.net, 2018.

Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham M. Kakade. Decon-
structing what makes a good optimizer for language models. CoRR, abs/2407.07972, 2024.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid
Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Pritam Damania, Bernard
Nguyen, Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. Pytorch fsdp: Experiences on
scaling fully sharded data parallel, 2023. URL https://arxiv.org/abs/2304.11277.

16

http://jmlr.org/papers/v17/16-157.html
http://jmlr.org/papers/v17/16-157.html
https://arxiv.org/abs/2304.11277

Contents

1 Introduction 1

2 Related Work 3

3 Our method: AdEMAMix 4

4 Results 7

4.1 Transformer LLM Training . 7

4.2 Mamba LM Training . 9

4.3 ViT Training . 9

5 Conclusion 10

6 Acknowledgements 11

A Implementation details 18

A.1 Deriving the ´3 scheduler . 18

A.2 Pytorch implementation . 19

A.3 Optax implementation . 20

B Experimental details 21

B.1 Transformer LLM experiments . 21

B.2 Mamba LM experiments . 23

B.3 ViT experiments . 24

C Additional results 25

C.1 LLM experiments . 25

C.1.1 In-Context Learning (ICL) results . 25

C.1.2 More results on forgetting . 26

C.1.3 Removing the second EMA mid-training 28

C.1.4 Hyperparameter sensitivity . 29

C.1.5 Impact of training for fewer iterations . 31

C.1.6 Limitations of a single EMA . 32

C.1.7 Removing m1 by setting ´1 = 0 . 34

C.1.8 Comparing m1 + ³m2 versus (1− ³)m1 + ³m2 35

C.1.9 Miscellaneous results . 37

C.2 ViT experiments . 39

C.3 Comparison with other methods . 40

C.3.1 Comparison with AdMeta and DEMA . 40

C.3.2 Comparison with Lion . 41

C.3.3 Adding a third momentum term (∼AggMo) 42

17

Arxiv preprint

A IMPLEMENTATION DETAILS

A.1 DERIVING THE ´3 SCHEDULER

Let’s consider S(t), the sum of the weights given to the last t gradients by an EMA parameterized by
´ ∈ [0, 1[:

S(t) = (1− ´)

t
∑

i=0

´i

We want to know which timestep t would correspond to a cumulative weight of 0.5:

(1− ´)

t
∑

i=0

´i = 0.5ô ´t+1 = 0.5ô t =
ln(0.5)

ln(´)
− 1

Let f(´) = ln(0.5)
ln(´) − 1. This function provides how many past consecutive gradients receive a

cumulative weight of 0.5.

Its inverse is:
f−1(t) = 0.5

1
t+1

We want a scheduler which increases ´ from ´start to ´end such that f(´) increases linearly. Given
an interpolating parameter µ ∈ [0, 1], this scheduler can be written as:

´(µ) = f−1((1− µ)f(´start) + µf(´end))

By replacing f and f−1 by their respective formula, one can arrive to:

´(µ) = exp
(ln(´start) ln(´end)

(1− µ) ln(´end) + µ ln(´start)

)

By setting ´end = ´3 and µ = t
Tβ3

, we arrive to the ´3-scheduler introduced in § 3. We show the

shape of our scheduler and compare it to a linear scheduler in Fig. 7.

0.0 0.2 0.4 0.6 0.8 1.0

µ

0.90

0.92

0.94

0.96

0.98

1.00

β
(µ
)

Our β-scheduler: βstart = 0.9, βend = 0.9999

Linear scheduler: βstart = 0.9, βend = 0.9999

Our β-scheduler: βstart = 0.9, βend = 0.999

Linear scheduler: βstart = 0.9, βend = 0.999

Figure 7: AdEMAMix’s ´3 scheduler. We compare our scheduler to a linear scheduler for ´start =
0.9 and ´end ∈ {0.999, 0.9999}. While our scheduler looks more aggressive at first glance, it
increases fast for smaller values of ´, and slowly for larger ones associated. This makes sense as
the same increase of ´ for larger ´ values has a bigger impact than that same increase applied to
a smaller value of ´. The two linear schedulers look practically the same, despite values of ´end

differing by one order of magnitude. This is not the case with our scheduler.

18

Arxiv preprint

A.2 PYTORCH IMPLEMENTATION

The following is a code skeleton for our AdEMAMix optimizer in Pytorch (Paszke et al., 2019).
The full implementation of AdEMAMix in Pytorch is provided in the following repository: https:
//github.com/apple/ml-ademamix

Listing 1: AdEMAMix code skeleton using Pytorch

1 import math
2 import torch
3 from torch.optim import Optimizer
4
5
6 class AdEMAMix(Optimizer):
7
8 def __init__(self,
9 params,

10 lr=1e-3,
11 betas=(0.9,0.999,0.9999),
12 alpha=5.0,
13 T_beta3=0,
14 T_alpha=0,
15 eps=1e-8,
16 weight_decay=0.0):
17 # init the optimizer
18
19 @torch.no_grad()
20 def step(self):
21
22 for group in self.param_groups:
23
24 lr = group["lr"]
25 lmbda = group["weight_decay"]
26 eps = group["eps"]
27 beta1, beta2, beta3_final = group["betas"]
28 T_beta3 = group["T_beta3"]
29 T_alpha = group["T_alpha"]
30 alpha_final = group["alpha"]
31
32 for p in group["params"]:
33
34 grad = p.grad
35 state = self.state[p]
36
37 # State initialization
38 if len(state) == 0:
39 state["step"] = 0 # step counter used for bias correction
40 state["m1"] = torch.zeros_like(p) # fast EMA
41 state["m2"] = torch.zeros_like(p) # slow EMA
42 state["nu"] = torch.zeros_like(p) # second moment estimate
43
44 m1, m2, nu = state["m1"], state["m2"], state["nu"]
45
46 # Bias correction: no correction for beta3’s EMA
47 state["step"] += 1
48 bias_correction1 = 1 - beta1 ** state["step"]
49 bias_correction2 = 1 - beta2 ** state["step"]
50
51 # Calling the schedulers for alpha and beta3
52 alpha = alpha_scheduler(state["step"], start=0, end=alpha_final, T=T_alpha)
53 beta3 = beta3_scheduler(state["step"], start=beta1, end=beta3_final, T=T_beta3)
54
55 # Update the EMAs
56 m1.mul_(beta1).add_(grad, alpha=1 - beta1)
57 m2.mul_(beta3).add_(grad, alpha=1 - beta3)
58 nu.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
59
60 # Compute step
61 denom = (nu.sqrt() / math.sqrt(bias_correction2)).add_(eps)
62 update = (m1.div(bias_correction1) + alpha * m2) / denom
63
64 # Add weight decay
65 update.add_(p, alpha=lmbda)
66
67 # Apply the update scaled by the learning rate
68 p.add_(-lr * update)
69
70 return loss

19

https://github.com/apple/ml-ademamix
https://github.com/apple/ml-ademamix

Arxiv preprint

A.3 OPTAX IMPLEMENTATION

The following is a code skeleton for our AdEMAMix optimizer in Optax, an optimization library
based on JAX (DeepMind et al., 2020). The full implementation of AdEMAMix in Jax is provided in
the following repository: https://github.com/apple/ml-ademamix

Listing 2: AdEMAMix code skeleton using JAX and Optax

1 from typing import NamedTuple
2 import chex
3 from optax._src import transform, combine, base, numerics
4 from jax import tree_util as jtu
5 import jax.numpy as jnp
6
7
8 class ScaleByAdemamixState(NamedTuple):
9 count: chex.Array

10 count_m2: chex.Array
11 m1: base.Updates
12 m2: base.Updates
13 nu: base.Updates
14
15
16 def ademamix(lr,
17 b1=0.9,
18 b2=0.999,
19 b3=0.9999,
20 alpha=5.0,
21 b3_scheduler=None,
22 alpha_scheduler=None,
23 eps=1e-8,
24 weight_decay=0.0):
25 return combine.chain(
26 scale_by_ademamix(b1, b2, b3, alpha, b3_scheduler, alpha_scheduler, eps),
27 transform.add_decayed_weights(weight_decay),
28 transform.scale_by_learning_rate(lr),
29)
30
31
32 def scale_by_ademamix(b1,
33 b2,
34 b3,
35 alpha,
36 b3_scheduler,
37 alpha_scheduler,
38 eps):
39
40 def init_fn(params):
41 m1 = tree_zeros_like(params) # fast EMA
42 m2 = tree_zeros_like(params) # slow EMA
43 nu = tree_zeros_like(params) # second moment estimate
44 return ScaleByAdemamixState(
45 count=jnp.zeros([], jnp.int32),
46 count_mu2=jnp.zeros([], jnp.int32),
47 m1=m1,
48 m2=m2,
49 nu=nu
50)
51
52 def update_fn(updates, state, params=None):
53 del params
54 c_b3 = b3_scheduler(state.count_m2) if b3_scheduler is not None else b3
55 c_alpha = alpha_scheduler(state.count_m2) if alpha_scheduler is not None else alpha
56 m1 = tree_update_moment(updates, state.m1, b1, 1) # m1 = b1 * m1 + (1-b1) * updates
57 m2 = tree_update_moment(updates, state.m2, c_b3, 1)
58 nu = tree_update_moment_per_elem_norm(updates, state.nu, b2, 2)
59 count_inc = numerics.safe_int32_increment(state.count)
60 count_m2_inc = numerics.safe_int32_increment(state.count_m2)
61 m1_hat = tree_bias_correction(m1, b1, count_inc)
62 nu_hat = tree_bias_correction(nu, b2, count_inc)
63 updates = jtu.tree_map(
64 lambda m1_, m2_, v_: (m1_+c_alpha*m2_)/(jnp.sqrt(v_)+eps),
65 m1_hat,
66 m2,
67 nu_hat
68)
69 return updates, ScaleByAdemamixState(
70 count=count_inc,
71 count_m2=count_m2_inc,
72 m1=m1,
73 m2=m2,
74 nu=nu
75)
76
77 return base.GradientTransformation(init_fn, update_fn)

20

https://github.com/apple/ml-ademamix

Arxiv preprint

B EXPERIMENTAL DETAILS

B.1 TRANSFORMER LLM EXPERIMENTS

Architecture details. Our architecture is based on the transformer decoder of Vaswani et al. (2017).
We use learnt positional encoding. We use a SentencePiece (Kudo & Richardson, 2018) tokenizer with
a vocabulary of 32000 tokens. The model specific parameters for the different sizes are summarized
in Table 1. Our implementation is using Jax (DeepMind et al., 2020), and we train using bfloat16,
except for normalization modules and softmax which use float32. The optimizer states and
operations are in float32.

Table 1: Model parameters for our LLM experiments.

Model parameters 110M 330M 1.3B

Hidden size 768 1024 2048
FFW expansion factor 4 4 4
Attention heads 12 16 16
Layers 12 24 24

How did we tune the hyperparameters? Starting from our smallest models (110M parameters), we
first tuned hyperparameters for our AdamW models. We then use the best hyperparameters found as
a starting point for AdEMAMix and tuned ´3 and ³. When we use schedulers for ³ and ´3, we set
T³ = T´3

= T , with T being the total number of iterations. Table 2 summarizes the hyperparameters
we tried for this model size. The impact of AdEMAMix’s hyperparameters is discussed extensively
in App. C.1.4. For our 330M parameter models, we mostly kept the best hyperparameters found
for the 110M model and re-tuned the learning rate and gradient clipping. For AdEMAMix, we
additionally tested multiple ´3 and ³ values. We summarize this process in Table 3. Finally, for our
1.3B parameter models, we re-iterated the same process, re-tuning only the learning rate and gradient
clipping parameters for our AdamW runs. When trying to transfer the best learning rate found to
AdEMAMix, we found it to be too high, causing instabilities we couldn’t fix using gradient clipping.
For this reason, we also tuned the learning rate for AdEMAMix for this model size. This process is
described in Table 4.

Table 2: Hyperparameter tuning for our 110M parameter LLM models. In this table we report
the hyperparameters we tuned for our 110M parameter models. When multiple values are given, we
bold the parameters we found to give the best results.

Hyperparameter Value

Learning rate ¸ 0.005, 0.002, 0.001, 0.0005, 0.0001
Number of warmup steps 2000, 3000, 4000, 5000, 6000
Sequence length 1024
Weight decay ¼ 0.1, 0.0
Learning rate decay scheduler no-decay, cosine-decay
Batch size 64
Gradient clipping None, 5.0, 1.0, 0.5

AdamW ´1 0.9, 0.99, 0.999, 0.9999
AdamW ´2 0.95, 0.999

AdEMAMix ´1 0.9
AdEMAMix ´2 0.999
AdEMAMix ´3 0.999, 0.9999, 0.99999
AdEMAMix ³ 2, 4, 6, 8, 10, 15, 20

Hyperparameters for experiments switching from AdamW and AdEMAMix. For experiments
in Fig. 5b and Fig. 5c, when we switch from AdamW to AdEMAMix during training, for our 110M
parameter models (Fig. 5b), we use ³ = 2, ´3 = 0.9999 and T³,´3

= 0. For our 1.3B parameter

21

Arxiv preprint

Table 3: Hyperparameter tuning for our 330M parameter LLM models. In this table we report
the hyperparameters we tuned for our 330M parameter models. When multiple values are given, we
bold the parameters we found to give the best results.

Hyperparameter Value

Learning rate ¸ 0.001, 0.0005, 0.0001
Number of warmup steps 3000
Sequence length 1024
Weight decay ¼ 0.1
Learning rate decay scheduler cosine-decay
Batch size 96
Gradient clipping 1.0, 0.5, 0.1

AdamW ´1 0.9
AdamW ´2 0.999

AdEMAMix ´1 0.9
AdEMAMix ´2 0.999
AdEMAMix ´3 0.999, 0.9999, 0.99999
AdEMAMix ³ 5, 8, 10, 15

Table 4: Hyperparameter tuning for our 1.3B parameter LLM models. In this table we report the
hyperparameters we tuned for our 1.3B parameter models. When multiple values are given, we bold
the parameters we found to give the best results.

Hyperparameter Value

Number of warmup steps 3000
Sequence length 1024
Weight decay ¼ 0.1
Learning rate decay scheduler cosine-decay
Batch size 128
Gradient clipping 1.0, 0.5, 0.1

Learning rate ¸ for AdamW 0.001, 0.0005, 0.0003, 0.0001, 0.00005
AdamW ´1 0.9
AdamW ´2 0.999

Learning rate ¸ for AdEMAMix 0.0005, 0.0003
AdEMAMix ´1 0.9
AdEMAMix ´2 0.999
AdEMAMix ´3 0.999, 0.9999, 0.99999
AdEMAMix ³ 1, 3, 5, 8, 10, 15

models (Fig. 5c), we use ³ = 1, ´3 = 0.9999 and T³,´3
= 0. Other hyperparameters are inherited

from the AdamW model we are switching from.

Hyperparameters used our constant learning rate scheduler experiments. For Fig. 3b we use
¸ = 10−4, the remaining of the hyperparameters are identical as those used for our other 1.3B
experiments and provided in Table 4.

Hyperparameters used in our forgetting experiments. For the experiments in Fig. 4, we used
110M parameter models and hyperparameters from Table 2.

22

Arxiv preprint

B.2 MAMBA LM EXPERIMENTS

Architecture details. We use a Mamba architecture (Gu & Dao, 2023) with an embedding dimension
of 768, an expansion factor of 2, a state size of 16, and a depth of 24. We use a batch size of 120
sequences of 1024 tokens. We use the EleutherAI/gpt-neox-20b tokenizer from Black et al.
(2022), using the HuggingFace library (Wolf et al., 2019).

Hyperparameter details. We used parameters mostly taken from Gu & Dao (2023):

• Learning rate: ¸ = 0.0006,

• Warmup steps: 3k,

• ¸-scheduler type: cosine decay to 10−5,

• Weight-decay: ¼ = 0.1,

• Gradient clipping value: 1,

• Total training steps T ∈ {64k, 128k}.

For experiments with AdamW, we use ´1 = 0.9 and ´2 = 0.999. For AdEMAMix, we use
´1 = 0.9, ´2 = 0.999, ´3 = 0.9999, T³,´3

= T and ³ = 8.

23

Arxiv preprint

B.3 VIT EXPERIMENTS

Architecture details. We use a ViT architecture following Dosovitskiy et al. (2021b). The architecture
details for both our 24M and 86M parameter models can be seen in Table 5. We do not use an EMA
of the iterates as our final model. Our implementation is in Pytorch (Paszke et al., 2019), and use
bfloat16.

Table 5: Model parameters for our ViT experiments.

Model parameters 24M 86M

Patch size 16 16
Number of patches 14× 14 14× 14
Image size 224 224
Embedding dim. 384 768
MLP dim. 1536 3072
Layers 12 12
Number of heads 6 12

Data augmentation and Mixup. While more sophisticated augmentation methods exist (Touvron
et al., 2022), we simply use random-resized cropping, random horizontal flip (p = 0.5), and random
color jitter (applied with a probability p = 0.8).

How did we tune the hyperparameters? For each model size, we started by tuning the hyperparam-
eters for the AdamW baseline. The hyperparameters we tuned and the values we retained for our
three different settings are in Table 6. For our experiments on ImageNet-1k, given that all models
overfit the dataset, we select the best model according to the minimum validation loss, akin to using
early stopping. For AdEMAMix, for each setting, we use the hyperparameters of the best AdamW
model and only tune ³ and ´3. For each setting, we train 8 models using ³ ∈ {1, 5, 10, 15, 20} and
´3 ∈ {0.999, 0.9999}. All of the AdEMAMix models are shown in Fig. 6 and Fig. 30. Only the best
AdamW model is shown in Fig. 30.

Table 6: Hyperparameters tuning for our ViT AdamW experiments. We started our hyperpa-
rameter search from the values given in (Dosovitskiy et al. (2021b), Table 3), which recommends
using (learning-rate, weight decay, dropout)= (0.003, 0.3, 0.1) when training on ImageNet-1k and
(0.001, 0.03, 0.1) when training on ImageNet-21k. The various hyperparameters we experimented
with are in the following table, values which gave us the lowest validation loss are in bold. For each
setting, AdEMAMix experiments use the same hyperparameters as the best AdamW baselines.

Setting 24M params, 11M images 86M params, 11M images 86M params, 1.3M images
(ImageNet-21k) (ImageNet-21k) (ImageNet-1k)

Learning rate 0.001,0.003, 0.005 0.001, 0.003 0.001, 0.003,0.005
Weight decay 0.03, 0.1, 0.3 0.03,0.1, 0.3 0.03, 0.1,0.3, 0.5, 0.7
Dropout 0.1 0.1 0.1
AdamW β1 0.9, 0.99, 0.999 0.9, 0.99, 0.999 0.9, 0.99, 0.999
Batch size 4096 4096 4096

24

Arxiv preprint

C ADDITIONAL RESULTS

C.1 LLM EXPERIMENTS

C.1.1 IN-CONTEXT LEARNING (ICL) RESULTS

In-Context Learning (ICL) results. We evaluate our largest (1.3B) LLM models on in-context
learning tasks. We use the lm-eval package (Gao et al., 2023). We consider the following tasks:

HellaSwag (Zellers et al., 2019), Winogrande (Sakaguchi et al., 2020), ARC (Bhakthavatsalam et al.,
2021), BoolQ (Clark et al., 2019), LogiQA (Liu et al., 2020), MathQA (Amini et al., 2019), MMLU
(Son et al., 2024), OpenbookQA (Mihaylov et al., 2018), PIQA (Bisk et al., 2020), PubmedQA (Jin
et al., 2019), RewardBench (Lambert et al., 2024), Sciq (Welbl et al., 2017), TruthfulQA (Lin et al.,
2022).

The two AdEMAMis and AdamW models we benchmark have been trained for 1M steps, with a
batch size of 128, corresponding to around 131B tokens. The results of the evaluation are in Table 7.
We observe how the model trained with AdEMAMix is outperforming the AdamW model on nearly
all of the tasks, sometimes by a large margin for e.g. PubmedQA. In addition to Table 7, we track the
evolution of some of those scores during training for MMLU, RewardBench, ARC-Challenge, and
ARC-Easy, results can be seen in Fig. 8. For that figure, we modify the way MMLU is evaluated.
Instead of appending all the multiple answers, we concatenate the question prompt and each answer
separately, and pick the most likely answer. We found it allows a much better comparison of smaller
models, which otherwise fluctuates around random guessing.

Table 7: In-context learning results for our 1.3B parameter models. We compare AdamW and
AdEMAMix models trained on 131B tokens. We use the lm-eval package.

Task AdamW AdEMAMix Task AdamW AdEMAMix

ARC-Challenge 0.262 0.274 OpenbookQA 0.240 0.238
ARC-Easy 0.612 0.619 PIQA 0.715 0.715
BoolQ 0.569 0.576 PubmedQA 0.556 0.632
HellaSwag 0.426 0.436 RewardBench 0.569 0.573
LogiQA 0.235 0.225 RewardBench (reasoning) 0.617 0.630
MathQA 0.226 0.236 Sciq 0.903 0.907
Winogrande 0.563 0.580 TruthfulQA 0.361 0.352
MMLU 0.244 0.248

15B 75B 131B

Tokens

0.28

0.30

A
cc
u
ra
cy

AdamW

AdEMAMix

(a) MMLU.

15B 75B 131B

Tokens

0.59

0.60

0.61

0.62

0.63

A
cc
u
ra
cy

AdamW

AdEMAMix

(b) RewardBench.

15B 75B 131B

Tokens

0.20

0.22

0.24

0.26

A
cc
u
ra
cy

AdamW

AdEMAMix

(c) ARC-Challenge.

15B 75B 131B

Tokens

0.50

0.55

0.60

A
cc
u
ra
cy

AdamW

AdEMAMix

(d) ARC-Easy.

Figure 8: In-context learning results for our 1.3B models. We periodically measure the perfor-
mances of AdamW and AdEMAMix models on in-context learning tasks. Except for a couple
exceptions, AdEMAMix is performing better than AdamW.

25

Arxiv preprint

C.1.2 MORE RESULTS ON FORGETTING

Evolution of forgetting during training. In Fig. 4 in the main paper, we follow the loss on one
specific batch over the entire training. In the following experiment, we do a closeup on the forgetting
of different batches as training progresses. The goal being to visualize how later batches are ultimately
more remembered, and compare the forgetting profiles of AdamW and AdEMAMix. For this, in
Fig. 9a and Fig. 9b, we follow fixed batches at different stages of the training process. Every 10k
iterations, we measure the loss over a specific batch B before and after training on that batch.

0 5000 10000

Iterations after training on the batch

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

N
o
rm

a
li
ze
d
lo
ss

(a) AdamW.

0 5000 10000

Iterations after training on the batch

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

50k

100k

150k

200k

250k

I
n
d
e
x
o
f
t
r
a
c
k
e
d
b
a
t
c
h

(b) AdEMAMix.

Figure 9: Comparing forgetting between AdamW and AdEMAMix. In (a) and (b), we follow—
over 10k iterations—the loss of training batches BÄ for Ä ∈ {30k, 40k, . . . , 250k}. We measure the
loss right before training on BÄ , and then monitor this loss over the next 10k steps. For instance,
the most yellow curve represents the loss on batch B250k that we track for the last 6k iterations of
training (we train for 256k iterations). The loss is normalized such that the loss for BÄ is 0 and
the one at time Ä + 50 is −1. This allows us to overlap curves and observe the tendency of the
model to forget batches throughout training. We observe that AdEMAMix improves its loss on
training batches BÄ over many timesteps, a striking difference compared to AdamW, which has its
loss on BÄ increasing faster. Moreover—likely due to the learning rate scheduler—the models forget
significantly slower at the end of training. In this later training stage (Ä > 180k), the difference
between the two optimizers is especially pronounced. While this visualization allows to efficiently
compare forgetting at different stages of training, the normalization prevents us from comparing the
drop in loss between AdEMAMix and AdamW. To compare loss values, see Fig. 4.

Why are training batches forgotten more at the end of training? Given the previous observation
about how both AdamW and AdEMAMix models are forgetting the training batches at different
paces given different stages of training, one can wonder what is causing this phenomenon? To answer
this question, we contrast the results of Fig. 4 with results obtained using a different scheduler with a
constant learning rate and a linear decay. We train 110M parameter models for 300k iterations, using
a max learning rate of 0.001 and a batch size of 64. Results for those experiments are in Fig. 10.
Those results indicate that the decaying learning rate might be the main parameter controlling how
much a batch is remembered during training. This has interesting implications when selecting which
learning rate decay to use. A cosine decay, with a rather long period of decay, might remember more
than a constant learning rate scheduler with only a small number of steps of linear decay at the end.

26

Arxiv preprint

70k 230k 300k

2.7

2.8

2.9

3.0

3.1

L
o
s
s
o
n
b
a
t
c
h
B

70k 230k 300k

2.7

2.8

2.9

3.0

3.1

L
o
s
s
o
n
b
a
t
c
h
B

(a) tB = 230k.

70k 270k

70k 270k

(b) tB = 270k.

70k 280k

70k 280k

(c) tB = 280k.

70k 290k

AdamW training
without B

AdamW training
using B at t = tB

tB

70k 290k

AdEMAMix training
without B

AdEMAMix training
using B at t = tB

tB

(d) tB = 290k.

Figure 10: Measuring forgetting using a held-out batch B, using a constant ¸-scheduler with
linear decay. The top row is for AdamW, the bottom row is for AdEMAMix. The setup is similar
to the one from Fig. 4, except that we now use a different learning rate scheduler. We use 3000
steps of linear warmup, them 247k steps of constant learning rate ¸ = 0.001, and finally 50k steps
of linear decay (represented by the shaded green area in the above plots). In Fig. 4, we observed
that the batches used later during training are remembered more by both AdamW and AdEMAMix.
Multiple hypotheses could explain this phenomenon: (i) it could be that the learning rate decay is the
main parameter controlling forgetting, or (ii) it could be that a sufficient number of steps are required
to reach a part of the optimization landscape where gradients are more orthogonal and baches are
remembered. The present experiment refutes that second hypothesis. Indeed, before the start of the
¸-decay (as seen in (a)), training batches are not remembered at the end of training. They only start
to be remembered when the decay periods starts, as seen in (b,c,d). Moreover, we can make the same
observation as in Fig. 4: compared to AdamW, AdEMAMix models tend to keep the training data
longer in memory.

27

Arxiv preprint

C.1.3 REMOVING THE SECOND EMA MID-TRAINING

Removing the second EMA mid-training. In Fig. 5b and Fig. 5c, we looked at what is happening
when we switch from AdamW to AdEMAMix in the middle of training. In this section, we will look
at the opposite conversion: removing the m2 parameter of AdEMAMix during training, effectively
switching back to AdamW. Results for this experiment can be seen in Fig. 11. Right after the switch,
we observe a drop of the loss, followed by an increase and finally back to convergence. Ultimately,
the final loss value is in between the ones obtained training only using AdamW and only using
AdEMAMix.

0 50000 100000 150000 200000 250000

Iterations

2.9

3.0

3.1

3.2

3.3

3.4

L
o
s
s

tswitch

AdamW

AdEMAMix α = 10.0, β3 = 0.9999, Tα = Tβ3
= 256k

AdEMAMix α = 10.0, β3 = 0.9999, Tα = Tβ3
= 90k

Figure 11: Switching from AdEMAMix to AdamW at tswitch = 128k. Using our AdEMAMix
optimizer, we train two 110M parameters models with different T³ = T´3

∈ {90k, 256k}. For
historical reasons, those experiments were done using a batch size of 32 instead of 64 (as we used for
all the other 110M parameter experiments in this paper). We switch from AdEMAMix to AdamW at
tswitch = 128k. At first, the removal of the +³m2 contribution in the update is suddenly decreasing
the effective learning rate, causing the loss to drop suddenly. The loss then increases slightly and
ends up in between the AdamW only (blue curve) and AdEMAMix only (grey curves) losses.

28

Arxiv preprint

C.1.4 HYPERPARAMETER SENSITIVITY

Hyperparameter sensitivity. Depending on whether the ³ and ´3 schedulers are used, AdEMAMix
adds up to 4 new hyperparameters: ³, ´3, T³ and T´3

. In all our experiments we tied T³ = T´3
=

T³,´3
. In this section we analyze the sensitivity of AdEMAMix to those hyperparameters. We study

the impact of ³ and ´3 in Fig. 12, revealing wide ranges of values for which hyperparameters are
outperforming the AdamW baseline. We study the sensitivity of T³,´3

as well as justify the choice
of using a scheduler on ³ in Fig. 13. When training from scratch T³,´3

needs simply to be large
enough to avoid early divergence. In Fig. 15 we study the sensitivity to the gradient clipping and
AdEMAMix’s ´1 value. While gradient clipping can help stabilize training and smooth the loss
curves, it has little impact over the final loss value. Reducing the value of ´1, we observe some loss
spikes, yet the final loss value is relatively unaffected.

0 50000 100000 150000 200000 250000

Iterations

2.8

2.9

3.0

3.1

3.2

3.3

3.4

L
o
s
s

AdamW

AdEMAMix β3 = 0.9999, α = 2

AdEMAMix β3 = 0.9999, α = 6

AdEMAMix β3 = 0.9999, α = 10

AdEMAMix β3 = 0.9999, α = 15

AdEMAMix β3 = 0.9999, α = 20

AdEMAMix β3 = 0.9999, α = 30

AdEMAMix β3 = 0.9999, α = 40

(a) Sensitivity to α.

0 50000 100000 150000 200000 250000

Iterations

2.8

3.0

3.2

3.4

L
o
s
s

AdamW

AdEMAMix β3 = 0.99, α = 8

AdEMAMix β3 = 0.999, α = 8

AdEMAMix β3 = 0.9999, α = 8

AdEMAMix β3 = 0.99999, α = 8

AdEMAMix β3 = 0.999995, α = 8

(b) Sensitivity to β3.

Figure 12: Sensitivity of AdEMAMix to ³ and ´3. We test the sensitivity of 110M parameter
models to the values of ³ and ´3. In (a), we vary ³ ∈ {2, 6, 10, 15, 20, 30, 40} while keeping all
other parameters equal (´3 = 0.9999, T³,´3

= 256k, clipping = 0.5, ¸ = 0.001, ¼ = 0.1). We see
that the larger the ³, the more significant is the loss decrease early during training, yet this does not
necessarily translates into a better final loss. The last iterate’s loss is larger for large values of ³. For
this model, a sweet spot seems to be reach for ³ = 10. Moreover, the span of values resulting in good
results is very large. In (b), we now vary ´3 ∈ {0.99, 0.999, 0.9999, 0.99999, 0.999995}. We first
observe that—except for ´3 = 0.999995—all those values are outperforming the AdamW baseline.
Moreover, we observe that there is a sweet spot, at ´3 = 0.9999, after which the final loss increases.

0 50000 100000 150000 200000 250000

Iterations

2.8

3.0

3.2

3.4

3.6

3.8

L
o
s
s

AdamW

AdEMAMix Tα = Tβ3
= 10k

AdEMAMix Tα = Tβ3
= 30k

AdEMAMix Tα = Tβ3
= 50k

AdEMAMix Tα = Tβ3
= 70k

AdEMAMix Tα = Tβ3
= 90k

AdEMAMix Tα = Tβ3
= 128k

(a) Sensitivity to Tα = Tβ3
= Tα,β3

.

0 50000 100000 150000 200000 250000

Iterations

2.8

3.0

3.2

3.4

L
o
s
s

AdamW

AdEMAMix Tβ3
= 256k, Tα = 0

AdEMAMix Tβ3
= 256k, Tα = 10k

AdEMAMix Tβ3
= 256k, Tα = 50k

AdEMAMix Tβ3
= 256k, Tα = 70k

AdEMAMix Tβ3
= 256k, Tα = 256k

(b) Sensitivity to Tα.

Figure 13: Sensitivity of AdEMAMix to T³ and T´3
. For all the AdEMAMix experiments in this

figure, we used ´1 = 0.9, ´2 = 0.999, ´3 = 0.9999, ³ = 10. In (a), we test the sensitivity of 110M
parameter models to the values of T³ and T´3

. We tied the two values as in all the experiments in
the main paper: T³ = T´3

= T³,´3
. We observe that when not enough warmup steps are used, the

iterates either diverge or converge to slightly worse loss values. In (b) we set T´3
= 256k and only

vary T³. We observe that T³ needs to be large enough to avoid divergence. This demonstrates the
necessity of using a warmup on ³. This being said, the necessity of increasing ³ linearly depends on
the value of ³. Using a smaller ³ value can work with T³ = 0, but using an ³-scheduler alleviates
any instability issue and increases the range of optimal ³ values (see Fig. 14). Moreover, in other
experiments, we observe how not using schedulers yields detrimental large updates in the early
training phase, see App. C.1.9, Fig. 27.

29

Arxiv preprint

0 50000 100000 150000 200000 250000

Iterations

2.8

2.9

3.0

3.1

3.2

3.3

3.4

L
o
s
s

AdamW

AdEMAMix Tβ3
= 256k, Tα = 0, α = 2

AdEMAMix Tα,β3
= 256k, α = 2

AdEMAMix Tβ3
= 256k, Tα = 0, α = 6

AdEMAMix Tα,β3
= 256k, α = 6

(a) No α-scheduler (110M).

0 50000 100000 150000 200000 250000

Iterations

2.4

2.6

2.8

3.0

3.2

L
o
s
s

AdEMAMix T
α

= 0, α = 1

AdEMAMix T
α

= 0, α = 3

AdEMAMix T
α

= 0, α = 5

AdEMAMix T
α

= 256k, α = 5

(b) No α-scheduler (1.3B).

Figure 14: The ³-scheduler reduces the sensitivity to ³. We compare AdEMAMix experiments
with and without ³-scheduler. The experiments with ³-scheduler are more stable. In (b), for 1.3B
parameter models, only ³ = 1 converges in a stable fashion (the purple curve with ³ = 5 diverged
early), and reaches a final loss slightly worse than the AdEMAMix model trained using an ³-scheduler
over 256k steps. In (a), for smaller 110M parameter models, we observe (i) that it is possible to
converge without ³-scheduler for small ³ values, as well as (ii) that it seems easier to reach good
loss values with a scheduler (the dotted lines have a lower final loss on average).

0 50000 100000 150000 200000 250000

Iterations

2.8

2.9

3.0

3.1

3.2

3.3

3.4

L
o
s
s

AdamW

AdEMAMix grad-clip= 0.1, α = 8

AdEMAMix grad-clip= 1.0, α = 8

AdEMAMix grad-clip= 5.0, α = 8

AdEMAMix grad-clip= 0.1, α = 2

AdEMAMix grad-clip= 1.0, α = 2

AdEMAMix grad-clip= 5.0, α = 2

(a) Sensitivity to gradient clipping.

0 50000 100000 150000 200000 250000

Iterations

2.8

3.0

3.2

3.4

L
o
s
s

AdamW

AdEMAMix β1 = 0.0

AdEMAMix β1 = 0.1

AdEMAMix β1 = 0.3

AdEMAMix β1 = 0.5

AdEMAMix β1 = 0.7

AdEMAMix β1 = 0.9

AdEMAMix β1 = 0.99

(b) Sensitivity to β1.

Figure 15: Sensitivity of AdEMAMix to ´1 and the gradient clipping value. Unless specified in the
caption, all the AdEMAMix experiments in this figure used ´1 = 0.9, ´2 = 0.999, ´3 = 0.9999, ³ =
10, T³,´3

= 256k. In (a) we vary the amount of gradient clipping used during training. We notice
how gradient clipping can help to smooth the curves, yet bringing only minor improvements. In
(b) we perform a sweep over ´1 ∈ {0, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99}. The value ´1 = 0.0 is especially
interesting as it allows us to remove entirely m1, therefore saving memory. We observe that smaller
´1 values yield noisier curves, with multiple loss spikes. At the 110M parameter scale, those spike
do not significantly impact the convergence, we conjecture that they could become a problem at
larger scales. We also notice that slightly better losses could be obtained using smaller ´1 values (e.g.
´1 = 0.3), we keep ´1 = 0.9 in all of our experiments for the ease of comparison with AdamW.

30

Arxiv preprint

C.1.5 IMPACT OF TRAINING FOR FEWER ITERATIONS

Sensitivity to the number of iterations. As we rely on old gradients, on question that arises is
whether AdEMAMix would still perform well when reducing the number of iterations. In this section
we compare the loss obtained by 110M parameter models when halving the number of iterations and
doubling the batch size, in such a way that the number of tokens consumed for training is always the
same (17B). In Fig. 16, we observe that decreasing the number of iterations too much increases the
final loss of the model. This effect is more pronounced for AdEMAMix. However, at both 32k and
64k iterations, AdEMAMix still outperforms AdamW. In Fig. 17 we observe that reducing ´3 can
mostly alleviate the problem.

0 5B 10B 17B

Tokens

2.8

3.0

3.2

3.4

L
o
s
s

AdamW 256k steps, bs = 64

AdamW 128k steps, bs = 128

AdamW 64k steps, bs = 256

AdamW 32k steps, bs = 512

(a) AdamW with fewer steps.

0 5B 10B 17B

Tokens

2.8

3.0

3.2

3.4

L
o
s
s

AdEMAMix 256k steps, bs = 64

AdEMAMix 128k steps, bs = 128

AdEMAMix 64k steps, bs = 256

AdEMAMix 32k steps, bs = 512

(b) AdEMAMix with fewer steps.

32k 64k 128k 256k

Number of training iterations

2.80

2.82

2.84

2.86

F
in
a
l
lo
ss

AdamW 17B

AdEMAMix 17B

(c) Comparing the final loss.

Figure 16: Impact of using fewer iterations on AdEMAMix vs. AdamW. We train multiple
110M parameter models. All models are trained on 17B tokens, but using different batch sizes (bs ∈
{64, 128, 256, 512}), which results in different numbers of iterations: {32k, 64k, 128k, 256k}. For
both AdamW and AdEMAMix, we use hyperparameters from Table 2 (´3 = 0.9999 for AdEMAMix).
In (a), we observe a drop in performance when reducing the number of steps, as the loss of the
final iterates is higher for the model trained for 32k steps compared to the ones trained for more
iterations. In (b) we observe a similar story for AdEMAMix models, with a slightly more pronounced
performance degradation. Yet, as it can be seen in (c), the gap between AdEMAMix and AdamW still
remains, even when training for 32k iterations. Importantly, this experiment does not suggest that
AdEMAMix is performing worse when using larger batches. In our ViT experiments, we successfully
use a batch size of 4096.

0 5B 10B 17B

Tokens

2.8

3.0

3.2

3.4

L
o
s
s

AdEMAMix 256k steps, bs = 64

AdEMAMix 128k steps, bs = 128

AdEMAMix 64k steps, bs = 256

AdEMAMix 32k steps, bs = 512

(a) AdEMAMix with fewer steps
β3 = 0.9999 (same as Fig. 16b).

0 5B 10B 17B

Tokens

2.8

3.0

3.2

3.4

L
o
s
s

AdEMAMix 256k steps, bs = 64

AdEMAMix 128k steps, bs = 128

AdEMAMix 64k steps, bs = 256

AdEMAMix 32k steps, bs = 512

(b) AdEMAMix with fewer steps
β3 = 0.999.

32k 64k 128k 256k

Number of training iterations

2.80

2.82

2.84

2.86

F
in
a
l
lo
ss

AdamW 17B

AdEMAMix 17B, β3 = 0.9999

AdEMAMix 17B, β3 = 0.999

(c) Comparing the final loss.

Figure 17: Reducing ´3 can work better with low numbers of iterations. We take the same
experimental protocol as Fig. 16 but this time we compare training AdEMAMix models with
´ = 0.999 and ´ = 0.9999. In (a,b) we observe how using a smaller ´3 = 0.999 solves—in a
large part—the problem of decreasing performances when using a small number of iterations. In
(c), while final loss for T ∈ {128k, 256k} is lower using ´3 = 0.9999, using ´3 = 0.999 is better
for T ∈ {32k, 64k}. Using ´3 = 0.999, the gap between AdEMAMix and AdamW increases as the
number of iterations decreases.

31

Arxiv preprint

C.1.6 LIMITATIONS OF A SINGLE EMA

Results on a 2D toy example. A natural question that arises from our method is whether it is possible
to obtain the same results without the additional EMA. In this section we aim to convince the reader
that the two EMAs are required. First, we propose to study a small toy 2D optimization problem:

(x⋆, y⋆) ∈ argmin
(x,y)

f(x, y), with f(x, y) = 8(x− 1)2 × (1.3x2 + 2x+ 1) + 0.5(y − 4)2

This function was introduced by Liu et al. (2023) as a function with sharp curvature along the

x-axis, and flatter curvature along the y-axis. Initializing the first iterate x(0) = (0.3, 1.5), we
start optimizing with (i) Adam with a large ´1 = 0.999, and (ii) AdEMAMix with ´1 = 0.9 and
´3 = 0.999. In both cases ´2 = 0.999. To make the experiment interesting, we initialize the EMA
buffers for both methods to either (−3, 0) or (−0.8,−3). This has for effect to give an initial "speed"
to the first iterate. As a result of this speed, Adam with a large ´1 is unable to correct his trajectory. In
contrast, using two EMAs, one with a small, and one with a large ´—as in AdEMAMix—converges
to the solution. The fast changing EMA can correct for the bias introduced by the slow changing
EMA. See Fig. 18 for results.

start

Adam β1 = 0.999

AdEMAMix β1 = 0.9, β3 = 0.999

(a) m
(0)
1 = m

(0)
2 = [−3, 0].

start

Adam β1 = 0.999

AdEMAMix β1 = 0.9, β3 = 0.999

(b) m
(0)
1 = m

(0)
2 = [−0.8,−3].

Figure 18: Showing the necessity of a second momentum term on a toy example. In this
experiment, we use Adam and AdEMAMix to optimize a simple function (same function as in
Fig.2 in Liu et al. (2023), ⋆ is a local optimum). We want to understand what is preventing the
use of large ´1 values in Adam, and how AdEMAMix is overcoming this problem. Starting from

x(0) = [0.3,−1.5], we initialize m1 (resp. m1 and m2) for Adam (resp. AdEMAMix) to either

[−3, 0] or [−0.8,−3]—shown with black arrows (not to scale). ν(0) is still initialized to 0. This
is similar to giving an initial speed to the iterate. In both cases (a) and (b), the iterates following
the Adam trajectory fail to converge in the given number of iterations. This is due to the large ´1

which requires many hundreds of iterations to significantly alter m1. As a result, the iterates mostly

follow the initial direction imposed by m
(0)
1 (ν is still used to scale m1). In contrast, AdEMAMix

converges to the solution. The fast (smaller ´) EMA of AdEMAMix corrects the trajectory of the
slow (high ´) EMA. Interestingly, AdEMAMix initially overshoots the optimum. It has to wait for

the influence of m
(0)
2 to fade away before finally converging to the solution. While this experiment

does not explain why a larger momentum would be beneficial, it illustrates how using two EMAs can
enable the use of large ´ values. A better intuition behind why a large momentum could be beneficial
is presented in Fig. 2.

Results training 110M parameters LMs. To further demonstrate that simply increasing ´1 in
AdamW does not provide nearly the same gains as AdEMAMix, we run several additional experiments.
In Fig. 19 we show what we obtain when training from scratch using a single EMA with a ´1 ∈
{0.99, 0.999, 0.9999, 0.99999}. Naively increasing ´1 in AdamW does not work; adding a scheduler
on ´1 to smoothly increase its value during the entirety of the training also fails. In Fig. 20, we show
results when increasing ´1 in the middle of training, with and without scheduler on ´1. This differs
from the previous setting as we bypass the initial training phase capable of causing instabilities (see

32

Arxiv preprint

§ 3), as well as bypass the initial iterations during which the bias correction done by AdamW can
have an impact. Here again we observe increasing the ´1 value does not provide any noticeable gain.

0 50000 100000 150000 200000 250000

Iterations

3.0

3.5

4.0

4.5

5.0

5.5

6.0

L
o
s
s

AdamW β1 = 0.9

AdamW β1 = 0.99

AdamW β1 = 0.999

AdamW β1 = 0.9999

AdamW β1 = 0.99999

(a) Vanilla AdamW.

0 50000 100000 150000 200000 250000

Iterations

2.8

2.9

3.0

3.1

3.2

3.3

3.4

L
o
s
s

AdamW β1 = 0.9, β2 = 0.999

AdamW β1 = 0.99, β2 = 0.999

AdamW β1 = 0.999, β2 = 0.999

AdamW β1 = 0.9999, β2 = 0.999

AdamW β1 = 0.99995, β2 = 0.999

AdamW β1 = 0.99999, β2 = 0.999

AdamW β1 = 0.99999, β2 = 0.9999

(b) AdamW with β1-scheduler.

Figure 19: Increasing ´1 in AdamW. In (a) we perform a simple sweep over the ´1 hyperparameter
of AdamW, we observe how the optimizer is unable to cope with large values of ´1, diverging for
´1 > 0.999. In (b) we modify AdamW to incorporate the tricks we used in AdEMAMix, i.e. we add
a scheduler on ´1. While this prevents divergence, the final loss is getting worse as we increase ´1.
We had to increase ´2 to stabilise the training when using ´1 = 0.99999. Those experiments support
the importance of the additional EMA in AdEMAMix.

200000 250000 300000 350000 400000 450000 500000

Iterations

2.8

2.9

3.0

3.1

3.2

L
o
s
s

AdamW β1 = 0.9 from scratch

AdamW β1 = 0.99

AdamW β1 = 0.999

AdamW β1 = 0.9999

AdamW β1 = 0.99999

(a) Increasing β1 without warmup.

200000 250000 300000 350000 400000 450000 500000

Iterations

2.8

2.9

3.0

3.1

3.2

L
o
s
s

AdamW β1 = 0.9 from scratch

AdamW β1 = 0.99, Tβ1
= 200k

AdamW β1 = 0.999, Tβ1
= 200k

AdamW β1 = 0.9999, Tβ1
= 200k

AdamW β1 = 0.99999, Tβ1
= 200k

(b) Increasing β1 with warmup.

Figure 20: Increasing ´1 in AdamW later during training. In (a) we load an AdamW checkpoint
and resume training using AdamW with a larger ´1. We observe no gain over the baseline from
increasing the value of ´1. In (b), we add a scheduler over ´1 (similar to the scheduler over ´3 for
AdEMAMix) to smooth the transition between ´1 = 0.9 and larger values. We set T´1

= 200k
iterations. Despite the smoother transition, no gain over the baseline is observed.

33

Arxiv preprint

C.1.7 REMOVING m1 BY SETTING ´1 = 0

Effect of the batch size when ´1 = 0. In this section we investigate the impact of setting ´1 = 0,

which allows to replace m
(t)
1 by the current gradient g(t), saving memory. In this scenario the

memory complexity of AdEMAMix is the same as the one of AdamW. We noticed in Fig. 15b how
reducing ´1 can make the training slightly more unstable, triggering some loss spikes. In Fig. 21
we study the impact of the batch size on those instability, revealing that ´1 = 0 is less stable when
using larger batch sizes. However, despite the spikes, the final loss for ´1 = 0 and ´1 = 0.9 are very
similar—´1 = 0.9 yielding slightly better results for smaller batch sizes.

0 128k 256k

Iterations

2.8

3.0

3.2

3.4

3.6

3.8

L
o
s
s

AdEMAMix batch-size= 4, β1 = 0

AdEMAMix batch-size= 4, β1 = 0.9

AdEMAMix batch-size= 8, β1 = 0

AdEMAMix batch-size= 8, β1 = 0.9

AdEMAMix batch-size= 16, β1 = 0

AdEMAMix batch-size= 16, β1 = 0.9

AdEMAMix batch-size= 32, β1 = 0

AdEMAMix batch-size= 32, β1 = 0.9

AdEMAMix batch-size= 64, β1 = 0

AdEMAMix batch-size= 64, β1 = 0.9

AdEMAMix batch-size= 128, β1 = 0

AdEMAMix batch-size= 128, β1 = 0.9

Figure 21: Effect of batch size with ´1 = 0. For a 110M parameter model, we use ´1 ∈ {0.0, 0.9}
and vary the batch-size ∈ {4, 8, 16, 32, 64, 128}. Lighter curves use ´1 = 0, darker curves are their
´1 = 0.9 counterpart. For small batch sizes, no instabilities are observed, and ´1 = 0.9 reaches
slightly better performances. For larger batch sizes, instabilities are observed with using ´1 = 0,
yet the final loss values are similar as the ones obtained with ´1 = 0.9. This indicates that one can
potentially save memory without compromising results.

Setting ´1 = 0 for 1.3B parameter models. In this section, using a 1.3B parameter model, we
re-do the same experiment as in Fig. 1, but we set ´1 = 0. In Fig. 22, we show the results of this
experiment.

0 200k 500k 770k

Iterations

2.3

2.4

2.5

2.6

2.7

2.8

L
o
s
s

AdamW 101B tokens

AdEMAMix 101B tokens β1 = 0.9, β3 = 0.9999

AdEMAMix 101B tokens β1 = 0.0, β3 = 0.9999

Figure 22: Using ´1 = 0 with a 1.3B parameter model. We use ´2 = 0.999 for all those
experiments. We observe how it is possible to converge despite using ´1 = 0. The final loss with
´1 = 0 is slightly better than the one with ´1 = 0.9.

34

Arxiv preprint

C.1.8 COMPARING m1 + ³m2 VERSUS (1− ³)m1 + ³m2

In the equation AdEMAMix, we combine m1 and m2 using m1 + ³m2. In this section we contrast
this to using a convex combination (1− ³)m1 + ³m2, with ³ ∈ [0, 1].

Are those two somewhat equivalent? Given the combination ¸(m1+³m2), it is possible to rewrite
it as a convex combination as such:

¸(m1 + ³m2) = ˆ̧((1− ³̂)m1 + ³̂m2), with ˆ̧ = ¸(³+ 1) and ³̂ =
³

³+ 1
.

Therefore, the two formulas are equivalent up-to a reparametrization. However, in practice, we use
schedulers on ¸ and ³. While at any timestep t, it is possible to reparametrize one formula into the
other, there is not one single reparametrization that holds for all timesteps. Assuming that we do not
change the nature of the schedulers for ³ and ¸, those two formulations are therefore not equivalent.
In Fig. 23 we show the evolution of the weights given to m1 and m2 for the two approaches. We
assume a cosine scheduler for ¸ and a linear scheduler for ³. We can see how the two formulations
give very different weights to m1 and m2.

0 100000 200000

t

0

1

2

×10
−3

weight for m1: η
(t)

weight for m2: η
(t)

α
(t)

(a) η(t)(m1 + α(t)
m2).

0 100000 200000

t

0.0

0.5

1.0

×10
−3

weight for m1: η
(t)(1 − α

(t))

weight for m2: η
(t)

α
(t)

(b) η(t)((1−α(t))m1+α(t)
m2).

Figure 23: Weights given to m1 and m2 for the two formulations. In (a), we show the weights

given to m1 and m2 when we use ¸(t)(m1 + ³(t)m2). We use ³ = 8 (³ is the final value

reached by the scheduler ³(t)). In (b), we show the weights given to m1 and m2 when we use

¸(t)((1 − ³(t))m1 + ³(t)m2). We use ³ = 0.9. Importantly, in both cases, we assume a cosine

scheduler for ¸(t) and a linear scheduler for ³(t). Given this choice of schedulers, there is no
reparametrization which can make those two formulation equal. In Fig. 24 we show that using the
convex combination formulation yields worse results.

Is the convex combination better? Now that we established that the two formulations are
different, which one is better? To answer this we run two grid searches, varying ¸ ∈
{0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6} and ³ ∈ {2, 4, 6, 8, 10, 12, 14} for the formulation in equation AdE-
MAMix, and ³ ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} for the convex combination formulation. Results
in Fig. 24 show how the formulation used in AdEMAMix provides a better loss for all the pairs
(¸, ³) tested, also outperforming AdamW for all of those. In contrast, for the convex combination,
while most (¸, ³) pairs outperform AdamW, the improvement is smaller.

Getting the same results by changing the schedulers for the convex combination. We concluded
before that—unless we tamper with the schedulers—it is not possible to find a reparametrization that
would work for all timesteps and make the two formulations equivalent. What if we could change
the schedulers? Which schedulers would we need to use with the convex formulation, to get the

same results as with the other formulations. The answer is simple, let ¸(t) and ³(t) denote the cosine
and linear schedulers for resp. ¸ and ³. The convex combination would need to use the following
schedulers:

ˆ̧(t) = ¸(t)(³(t) + 1), ³̂(t) =
³(t)

³(t) + 1
.

Therefore, to get equivalent results as for the original AdEMAMix formulation, the learning rate

scheduler would need to be ˆ̧(t), which is not a cosine scheduler. The ³ scheduler, ³̂(t), would not be
linear. We plot those schedulers in Fig. 25.

35

Arxiv preprint

0.4 0.6 0.8 1 1.2 1.4 1.6

η × 10
3

14

12

10

8

6

4

2

α

3.04

3.05

3.06

3.07

(a) m1 + αm2.

0.4 0.6 0.8 1 1.2 1.4 1.6

η × 10
3

0.9

0.8

0.7

0.6

0.5

0.4

0.3

α

AdamW

AdamW

3.04

3.05

3.06

3.07

(b) (1− α)m1 + αm2.

Figure 24: ¸-³ hyperparameter sweep for the two formulations. For pairs of (¸, ³), we train small
(6-layers) transformer LMs on RedPajama v2 data. We plot the results for the two formulations, the
color represents the final validation loss, and is normalized between the two plots. We also do a
sweep over ¸ to fine the value giving the best results for AdamW. We use a green level curve to show
the performance of the best AdamW model. Points in the interior of the green level curve represents
configurations outperforming AdamW. In (a), we color the entire frame in green as all the pairs of
hyperparameters are outperforming AdamW. It is clear from those two figures that using m1 + ³m2

yields better results, more consistently, compared to using (1− ³)m1 + ³m2.

0 100000 200000

t

0

1

2

×10
−3

η
(t)

η̂
(t) = η

(t)(α(t) + 1)

(a) η schedulers.

0 100000 200000

t

0.0

2.5

5.0

7.5 α
(t)

α̂
(t)

=
α
(t)

α
(t)+1

(b) α schedulers.

Figure 25: Using schedulers ˆ̧(t) and ³̂(t) with the convex combination formulation is the same
as using the original AdEMAMix. The original AdEMAMix forumulation uses a cosine and linear
schedulers for resp. ¸ and ³. Those schedulers are in blue. For the weights given to m1 and m2 to be

the same when using the convex combination formulation, one need to use different schedulers ˆ̧(t)

and ³̂(t) (in orange). Using the original AdEMAMix formulation allows to use simpler schedulers.

36

Arxiv preprint

C.1.9 MISCELLANEOUS RESULTS

Impact of ´3 and ³ schedulers when starting AdEMAMix from AdamW. As mentioned in § 3,
we do not necessarily need the ³ and ´3 schedulers when resuming training from a sufficiently late
checkpoint. Fig. 5b and Fig. 5c do not use schedulers, unless we start using AdEMAMix from
scratch. In Fig. 26, we vary the warmup periods for ³ and ´3 when starting AdEMAMix from an
AdamW checkpoint at tswitch = 300k. We observe how increasing T´3

= T³ only slows down the
convergence. This serves to illustrate that the schedulers for ³ and ´3 are only required to stabilise
the optimization during the early training phase.

200000 250000 300000 350000 400000 450000 500000

Iterations

2.8

2.9

3.0

3.1

3.2
L
o
s
s

AdamW

AdEMAMix β3 = 0.9999, α = 2.0, Tα = Tβ3
= 0

AdEMAMix β3 = 0.9999, α = 2.0, Tα = Tβ3
= 25k

AdEMAMix β3 = 0.9999, α = 2.0, Tα = Tβ3
= 50k

AdEMAMix β3 = 0.9999, α = 2.0, Tα = Tβ3
= 100k

Figure 26: No need to use schedulers when switching from AdamW to AdEMAMix sufficiently
late. For a 110M parameter model, we switch from AdamW to AdEMAMix after tswitch =
300k iterations. We vary T´3

= T³ ∈ {0, 25k, 50k, 100k}, the other prameters are fixed: ´3 =
0.9999, ³ = 2, the learning rate is inherited from AdamW and stays on his decaying course following
a cosine decay. AdEMAMix’s m2 is initialized to 0. The larger T´3

= T³, the slower the convergence
is, the final loss value are very similar. This shows that the schedulers for ³ and ´3 are not important
when starting AdEMAMix from a sufficiently late checkpoint.

AdEMAMix from scratch without schedulers. In this section we provide more justification for
the use of schedulers on ³ and ´3. We reveal that, without the use of schedulers, the norms of the
updates increases significantly, even for small ³ values. Unstable and large weight updates are known
to occur in the early phases of training when learning rate warmup is not used (Gotmare et al., 2019).
Using large momentum values too early seem to increase this phenomenon. See Fig. 27.

0 50000 100000 150000 200000 250000

Iterations

102

103

104

N
o
r
m

o
f
∆
θ

AdamW

AdEMAMix α = 0.9, β3 = 0.9999, Tα,β3
= 0

AdEMAMix α = 0.6, β3 = 0.9999, Tα,β3
= 0

AdEMAMix α = 0.3, β3 = 0.9999, Tα,β3
= 0

AdEMAMix α = 0.1, β3 = 0.9999, Tα,β3
= 0

(a) Norm of 1000 consecutive updates.

0 50000 100000 150000 200000 250000

Iterations

3.0

3.5

4.0

4.5

5.0

5.5

6.0

L
o
s
s

AdamW

AdEMAMix α = 0.9, β3 = 0.9999, Tα,β3
= 0

AdEMAMix α = 0.6, β3 = 0.9999, Tα,β3
= 0

AdEMAMix α = 0.3, β3 = 0.9999, Tα,β3
= 0

AdEMAMix α = 0.1, β3 = 0.9999, Tα,β3
= 0

(b) Loss.

Figure 27: The norm of the updates is exploding without schedulers. For historical reasons, those
experiments were done with a 110M parameter model using a batch size of 32, and without weight
decay (¼ = 0). We use ´2 = 0.999 and ´1 = 0.9. We use 3000 steps of learning rate warmup

for all the experiments. In (a), we monitor the norm of 1000 consecutive updates: ∥∆θ(t)∥2 =
∥θ(t+1000)−θ(t)∥2. Even when using small values of ³, the norm of ∆θ(t) is increasing significantly
at the beginning of training. As a result, in (b), we observe how—without the use of a scheduler on ³
and ´3—AdEMAMix models are either diverging or fail to recover and improve upon AdamW.

37

Arxiv preprint

Impact of the linear decay duration when using a constant ¸-scheduler. In Fig. 3b we show
results using AdEMAMix with a linear warmup→ constant→ linear decay learning rate scheduler.
We used 100k of linear decay. In this section we experiment with 200k steps of linear decay, the rest
of the parameters are the same: we use a 1.3B parameter model with a max learning rate of 10−4 and
remaining hyperparameters as in Table 4. Results can be seen in Fig. 28.

0 500k = Tα,β3
900k 1.1M

Iterations

2.2

2.3

2.4

2.5

2.6

2.7

2.8

L
o
s
s

AdamW

AdEMAMix β3 = 0.9999

AdEMAMix β3 = 0.99999

200k steps of linear η decay

Figure 28: Testing a different decay duration compared to Fig. 3b. Increasing the length of the
learning rate decay improves the results for each methods. The gap between AdEMAMix using
´3 = 0.99999 and ´3 = 0.9999 is shrinking, but the gap between AdEMAMix models and AdamW
remains.

Same figure as Fig. 1, including the AdamW trained on 197B tokens. In Fig. 1 we represent the
AdamW experiment trained on 197B tokens by a blue horizontal line for aesthetic reasons. In Fig. 29
we include this missing curve to the same plot.

0 256k 770k 1M 1.5M

Iterations

2.3

2.4

2.5

2.6

2.7

2.8

L
o
s
s

AdamW 197B

AdamW trained on

{34B, 101B, 131B, 197B} tokens

AdEMAMix trained on

{34B, 101B, 131B} tokens

Figure 29: Same as Fig. 1 adding AdamW 197B.

38

Arxiv preprint

C.2 VIT EXPERIMENTS

Top-k accuracies. In Fig. 6, we plot the test and train loss for the final iterates. In Fig. 30, we give
a more detailed view by reporting the evolution of the training loss, test loss, and top-1 accuracy.
Looking at the first row, the training loss for AdEMAMix is systematically better than the AdamW
baseline. The second row shows that in cases where the test loss correlates well with the train loss,
AdEMAMix works well. The top-1 accuracy carries the same message.

0 50000 100000

2.0

2.5

3.0

3.5

T
ra
in

L
o
ss

AdamW

AdEMAMix β3 = 0.999

AdEMAMix β3 = 0.9999

0 50000 100000

2.25

2.50

2.75

3.00

3.25

3.50

T
es
t
L
o
ss

0 50000 100000

Iterations

30

35

40

45

T
o
p
-1

A
cc
u
ra
cy

(a) 24M params, 11M images.
(ImageNet-21k)

0 50000 100000

1.5

2.0

2.5

3.0

3.5

T
ra
in

L
o
ss

AdamW

AdEMAMix β3 = 0.999

AdEMAMix β3 = 0.9999

0 50000 100000

2.0

2.5

3.0

3.5

T
es
t
L
o
ss

0 50000 100000

Iterations

35

40

45

50

T
o
p
-1

A
cc
u
ra
cy

(b) 86M params, 11M images.
(ImageNet-21k)

0 50000 100000

0

1

2

3

4

T
ra
in

L
o
ss

AdamW

AdEMAMix β3 = 0.999

AdEMAMix β3 = 0.9999

0 50000 100000

1

2

3

4

T
es
t
L
o
ss

0 50000 100000

Iterations

40

50

60

70

80

T
o
p
-1

A
cc
u
ra
cy

(c) 86M params, 1.3M images.
(ImageNet-1k)

Figure 30: AdEMAMix & capacity/data ratio. These figures complement Fig. 6 and provide the
top-1 accuracy as well as the training and test losses for the three experimental setups used in our
ViT experiments (see § 4.3). From left to right, the ratio between data and model capacity worsen.
In (a), we train a 24M parameter model on a dataset of 11M images (Imagenet-21k), doing a total
of 37 epochs. In this setting the training and test loss curves are very similar, signaling no blatant
overfitting. We observe AdEMAMix trivially outperforms the AdamW baseline. As the ratio between
data and model capacity worsen, in (b) (more capacity) and (c) (more capacity and less data), it
becomes more and more difficult to find hyperparameters outperforming the baseline. Yet, across all
those settings, the training loss for AdEMAMix is always lower than that of the AdamW baseline.
When decreasing training loss correlates well with decreasing test loss, AdEMAMix can be expected
to work well.

39

Arxiv preprint

C.3 COMPARISON WITH OTHER METHODS

C.3.1 COMPARISON WITH ADMETA AND DEMA

Double Exponential Moving Average (DEMA). Originally introduced by Mulloy (1994), a DEMA
originally aimed to emphasize the weight of recent asset price fluctuations, making the DEMA
indicator more reactive to changes compared to simple EMAs. Given notations introduced in the

main paper, let EMA
(T−N :T)
´ ≜ EMA(´, g(T−N), . . . , g(T)), let N be the window size representing

how many consecutive values are considered in the average, the formula for DEMA can be written as
follows:

DEMA(´, g(T−2N), . . . , g(T)) = 2 · EMA
(T−N :T)
´ − EMA(´, EMA

(T−2N :T−N)
´ , . . . , EMA

(T−N :T)
´).

If a simple EMA tends to give a significant weight to more recent observations, a DEMA emphasizes
this behaviour by removing some of the weight given to older observations. This is not what we
suggest doing in this work, we want both high sensitivity to recent observations and non-negligible
weights given to older observations.

AdMeta. Chen et al. (2023b) take inspiration over DEMA and use nested EMAs in their AdMeta-S
optimizer:



















m
(t)
1 = ´1m

(t−1)
1 + g(t)

h(t) = »g(t) + µm
(t)
1

m
(t)
2 = ´2m

(t−1)
2 + (1− ´2)h

(t)

θ(t) = θ(t−1) − ¸m
(t)
2 .

(AdMeta-S)

With µ and » parameterized by ´1 ∈ [0, 1[as such:

µ = 25− 10(´1 +
1

´1
)

» =
10

´1
− 9.

In their AdMeta-S experiments, they use ´1 = 0.9, corresponding to (µ, ») = (4.88, 2.11). ´2 takes
values ranging from 0.1 to 0.4. As a results, unlike AdEMAMix, AdMeta is not leveraging very old
gradients. Analysing the AdMeta algorithm, we see that it consists in two nested EMAs. We show the
shape of nested EMAs in Fig. 31. In sharp contrast with our approach we observe that (i) it reduces
the weights given to recent gradients and (ii) it gives a small weight to old gradients.

0 50 100 150 200

timesteps t

0.00

0.02

0.04

0.06

0.08

W
ei
g
h
t
g
iv
en

to
ea
ch

ti
m
es
te
p Nested EMAs: β1 = 0.9, β2 = 0.4

Sum of two EMAs: β1 = 0.9, β2 = 0.999

(a) Linear scale.

0 50 100 150 200

timesteps t

10−9

10−7

10−5

10−3

10−1

W
ei
g
h
t
g
iv
en

to
ea
ch

ti
m
es
te
p Nested EMAs: β1 = 0.9, β2 = 0.4

Sum of two EMAs: β1 = 0.9, β2 = 0.999

(b) Logarithmic scale.

Figure 31: Comparison between nested EMAs and a linear combination of EMAs. In (a) we
observe how two nested EMAs actually decrease the influence of recent timesteps. This is the
justification for the DEMA method, which aims to increase the sensitivity to recent gradients by
subtracting nested EMAs. In (b), using a log-scale for the y-axis, we see how, for the values used
in AdMeta, the older gradients receive a negligible weight. In our work, we show how very old
gradients can be leveraged to get better results by keeping a high sensitivity to recent gradients while
giving non-negligible weights to older gradients.

40

Arxiv preprint

C.3.2 COMPARISON WITH LION

The Lion optimizer. Chen et al. (2023a) derived the following optimizer. We change notations to
facilitate the comparison with AdEMAMix:

{

θ(t) = θ(t−1) − ¸ ·
(

sign(³m(t−1) + (1− ³)g(t)) + ¼θ(t−1)
)

m(t) = ´m(t−1) + (1− ´)g(t).
(Lion)

The Lion optimizer uses a sign function and updates its EMA after updating the parameters. Moreover,
it does not normalize the updates. While Lion and AdEMAMix are quite different from each others,

we can draw one similarity. Indeed, the interpolation ³m(t−1) + (1− ³)g(t) is similar to combining
two EMAs, one of them using ´ = 0. We also explore the possibility of setting AdEMAMix’s ´1 to 0
in § 3, we show in App. C.1.7 and App. C.1.4 (Fig. 15b) that this often works despite a more unstable
training. Interestingly, Chen et al. (2023a) find that larger ´ = 0.99 values work best. Beside this
similarity, the two optimizers behave very differently, the biggest difference being the use of the sign
function, which Chen et al. (2023a) claim can help regularize the training. We test the Lion optimizer
on language modeling. To tune the hyperparameters, we took values from Chen et al. (2023a) as a
starting point, as well as recipes provided by the Optax Jax library. A summary of our hyperparameter
tuning is in Table 8:

Table 8: Hyperparameter tuning for Lion 110M parameter models. When multiple values are
given, we bold the parameters we found to give the best results.

Hyperparameter Value

Learning rate ¸ 0.00005, 0.0001, 0.0002,0.0004, 0.0006, 0.0008, 0.001
Number of warmup steps 3000
Sequence length 1024
Weight decay ¼ 0.01, 0.125, 0.166,0.25, 0.5, 1.0
Learning rate decay scheduler cosine-decay
Batch size 64
Gradient clipping 1.0,0.5

Lion ³ 0.5, 0.7,0.9
Lion ´ 0.99, 0.9999

The training curve associated to the best hyperparameters is in Fig. 32. We observe that Lion is not
outperforming our carefully tuned AdamW baseline. Moreover, no attempt to increase ´ beyond 0.99
was successful, as those models mostly diverged. This emphasizes one of our main contributions: the
introduction of schedulers enabling the use of large momentum values.

0 50000 100000 150000 200000 250000

Iterations

2.8

3.0

3.2

3.4

3.6

L
o
s
s

AdamW

Best Lion model

Figure 32: Comparing AdamW with the best Lion model found. Hyperparameters used are in
Table 8. We train many Lion models and select the one with the lowest final validation loss. Lion is
not outperforming our carefully tuned AdamW baseline.

41

Arxiv preprint

C.3.3 ADDING A THIRD MOMENTUM TERM (∼AGGMO)

Lucas et al. (2019, AggMo) propose to add an arbitrary number (K) of momentum terms to the
gradient descent algorithm:

{

m
(t)
i = ´im

(t−1)
i + g(t) for 1 f i f K

θ(t) = θ(t−1) − ¸
K

∑

1≤i≤K m
(t)
i .

(AggMo)

In order to see whether more momentum terms can be beneficial, we modify our AdEMAMix
optimizer to include a third momentum m3. We name the resulting optimizer Ad3EMAMix:



































m
(t)
1 = ´1m

(t−1)
1 + (1− ´1)g

(t), m̂
(t)
1 =

m
(t)
1

1−´t

1

m
(t)
2 = ´3m

(t−1)
2 + (1− ´3)g

(t)

m
(t)
3 = ´4m

(t−1)
3 + (1− ´4)g

(t)

ν(t) = ´2ν
(t−1) + (1− ´2)g

(t)2, ν̂(t) = ν
(t)

1−´t

2

θ(t) = θ(t−1) − ¸
(

m̂
(t)
1 +³(m

(t)
2 +m

(t)
3)√

ν̂
(t)+ϵ

+ ¼θ(t−1)
)

.

(Ad3EMAMix)

We Train a 110M parameter model with same hyperparameters as in Table 2, but we use ³ = 4
instead of ³ = 8. We apply the same scheduler to ´4 as for ´3. In Fig. 33 we show the resulting
validation loss curves for various (´1, ´3, ´4) triplets. Our experiments show no advantage of adding
an extra ´4-EMA. Rather than carrying the message that we should use more momentum terms, our
work shows how—in order to use a large momentum—a term should be added to stay sensitive to
local fluctuations of the loss landscape. In that sense, we believe two terms should be enough.

0 128k 256k

Iterations

2.8

2.9

3.0

3.1

3.2

3.3

L
o
s
s

AdamW

AdEMAMix

Ad3EMAMix β1, β3, β4 = 0.9, 0.9999, 0.99999

Ad3EMAMix β1, β3, β4 = 0.9, 0.999, 0.99999

Ad3EMAMix β1, β3, β4 = 0.9, 0.999, 0.9999

Ad3EMAMix β1, β3, β4 = 0.9, 0.99, 0.9999

Ad3EMAMix β1, β3, β4 = 0.9, 0.99, 0.99999

Figure 33: Adding an extra momentum to AdEMAMix does not provide better results. We
train multiple 110M parameter Ad3EMAMix models with various (´1, ´3, ´4) triplets (lighter
curves). None of those models end up outperforming AdEMAMix, indicating that the additional m3

momentum term is seemingly not bringing any advantage.

42

	Introduction
	Related Work
	Our method: AdEMAMix
	Results
	Transformer LLM Training
	Mamba LM Training
	ViT Training

	Conclusion
	Acknowledgements
	Implementation details
	Deriving the 3 scheduler
	Pytorch implementation
	Optax implementation

	Experimental details
	Transformer LLM experiments
	Mamba LM experiments
	ViT experiments

	Additional results
	LLM experiments
	In-Context Learning (ICL) results
	More results on forgetting
	Removing the second EMA mid-training
	Hyperparameter sensitivity
	Impact of training for fewer iterations
	Limitations of a single EMA
	Removing m1 by setting 1=0
	Comparing m1 + m2 versus (1-) m1 + m2
	Miscellaneous results

	ViT experiments
	Comparison with other methods
	Comparison with AdMeta and DEMA
	Comparison with Lion
	Adding a third momentum term (AggMo)

