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Abstract

We formulate the metric learning problem as that of minimigihe differen-
tial relative entropy between two multivariate Gaussiamdar constraints on the
Mahalanobis distance function. Via a surprising equivedggrwe show that this
problem can be solved as a low-rank kernel learning probl8pecifically, we
minimize the Burg divergence of a low-rank kernel to an inlernel, subject to
pairwise distance constraints. Our approach has sevevahtaijes over exist-
ing methods. First, we present a natural information-tééoformulation for the
problem. Second, the algorithm utilizes the methods dgeldy Kulis et al.
[6], which do not involve any eigenvector computation; imtfgalar, the running
time of our method is faster than most existing techniqué&dT the formulation
offers insights into connections between metric learnimg) leernel learning.

1 Introduction

We propose a new formulation for learning a Mahalanobisdist under constraints. We model the
problem in an information-theoretic setting by leveragamgequivalence between the multivariate
Gaussian distribution and the Mahalanobis distance. We shat the problem of learning an op-

timal Mahalanobis distance translates to learning thenmgdt(Gaussian with respect to an entropic
objective. Thus, our problem can be thought of as maximittiegntropy of a multivariate Gaussian
subject to pairwise constraints on the associated Mahhisiistance.

To solve our problem, we show an interesting connection tecantly proposed low-rank kernel
learning problem [6]. Here, a low-rank kernkl is learned that satisfies a set of given distance
constraints as well as minimizes the Burg matrix divergandhe given kerneK,. It was shown
that this problem can be optimized using an iterative oation procedure with cog(cd?) per
iteration, where: is the number of distance constraints, ahid the dimensionality of the data. In
particular, this method does not require costly eigenvahmaputations, unlike many other metric
learning algorithms [4, 10, 11].

2 Problem Formulation

Given a set ofi points{x1, ..., z,, } in R, we seek a positive definite matrikwhich parameterizes
the Mahalanobis distance:

dA(wi,iL'j) = (331 — wj)TA(iEi — CBj).

We assume that some prior knowledge about the distanceg®etivese points is known. Specifi-
cally, we consider relationships constraining the sintifaor dissimilarity between pairs of points.
Two points are similar if the Mahalanobis distance betwd®mt is smaller than a given upper
bound,d(z;, ;) < u for a relatively small value of.. Similarly, two points are dissimilar if
da(x;, ;) > 1 for sufficiently largel.



In particular, for a classification setting where class Islbee known for each instance (as in Glober-
son and Roweis [4]), distances between points in the saras cén be constrained to be small, and
distances between two points in different classes can b&tradmed to be large.

Our problem is to learn a matrid which parameterizes a Mahalanobis distance that satisifies
given set of constraints. Typically, this learned distahagction is used fork-nearest neighbor
searchj-means clustering, etc. We note that, in the absence of kmowledge, these algorithms
typically use the standard squared Euclidean distancequivaently, the Mahalanobis distance
parameterized by the identity matix

In general, the set of distance functions in our feasiblendiébe infinite (we discuss later how to
re-formulate the problem for the case when the feasiblessapty). Therefore, we regularize the
problem by choosing the Mahalanobis matfixhat is as close as possible to the identity maifrix
(which parameterizes the baseline Euclidean distancdifum)c To quantify this more formally, we
propose the following information-theoretic framework.

There exists a simple bijection between the set of Mahalandibtances and the set of multivari-
ate Gaussians with fixed mean. Given a Mahalanobis distance parameterizedibye express
its corresponding multivariate Gaussianzés; m, A) = + exp (—da(x, m)), whereZ is a nor-
malizing constant. Using this bijection, we define the diseabetween two Mahalanobis distance
functions parametrized byt; and A, as the (differential) relative entropy between their cepand-
ing multivariate Gaussians:

KL (ol A A42)) = [ plasm, Ay log D200 g, (1)

p(z;m, Az)
Given a set of pairs of similar poinfsand pairs of dissimilar point®, our distance metric learning
problem is

min KL (p(a; m, A)|[p(a; m, T))
subjectto da(x;, x;) < wu (i,5) € S, (2)

Note thatm is an arbitrary fixed vector.

3 Algorithm

In this section, we demonstrate how to solve the informati@oretic metric learning problem (2)
by proving its equivalence to a low-rank kernel learninggbem. Using this equivalence, we appeal
to the algorithm developed in [6] to solve our problem.

3.1 EquivalencetoLow-Rank Kernel Learning

Let X = [x; x5 ... x,], and the Gram matrix over the input points Kig = X* X. Consider the
following kernel learning problem, to be solved far.

min DBurg(Ka KO)
subjectto Kj; + Kj; —2K;; <u  (i,j) € S,

3
Kii+ Kj; — 2K > (4,5) € D, @)
K > 0.
The Burg matrix divergence is a Bregman matrix divergenceergied by the convex function
¢(X) = —logdet X over the cone of semi-definite matrices, and it is defined as
Dgurg(K, Ko) = Tr(K K ') — logdet(KKy ') — n. 4)

Formulation (3) attempts to find the nearest kernel matriBimg-divergence to the input Gram
matrix, subject to linear inequality constraints. It canshewn that the Burg divergence between
two matrices is finite if and only if their range spaces are ghme [6]. This fact allows us to



conclude that the range spacesiofand K, are the same if the problem has a feasible solution.
Furthermore, the learned matti can be written as a rankkernel K = XTWTW X, for some
(d x d) full-rank matrix W.

We now state a surprising equivalence between problemsn@)3). By solving (3) forK =
XTWTW X, the optimalA for (2) can be easily constructed via= W7 1W. We will not provide
a detailed proof of this result; however, we present the teyolemmas.

Lemma 1: Dgyg(K, Ko) = 2KL (p(x; m, A)||p(z; m, I)) + ¢, wherecisa constant.

Lemma 1 establishes that the objectives for informatiaetatic metric learning and low-rank ker-
nel learning are essentially the same. It was recently sli8jhat the differential relative entropy
between two multivariate Gaussians can be expressed asritiexccombination of a Mahalanobis
distance between mean vectors and the Burg matrix diveegbetween the covariance matrices.
Here, the two mean vectors are the same, so their Mahaladisiésce is zero. Thus, the relative
entropy, KW(p(x; m, A)||p(x; m, I)), is proportional to the Burg matrix divergence frofrto 1.

Therefore, the proof of the Lemma 1 reduces to showing thaty( K, Ko) and Dgug(A, I) differ
by only a constant. Interestingly, ttdémensions of the matrices in these two divergences are
different: K and K are(n x n), while A andI are(d x d).

Lemma2: Given K = XTAX, Aisfeasiblefor (2) if and only if K isfeasible for (3).

This lemma confirms that if we have a feasible kernel makfizatisfying the constraints of (3), the
corresponding Mahalanobis distance parameterized bstisfies the constraints of (2). Note that
by associating the kernel matrix with the Mahalanobis diséa we can generalize to unseen data
points, thus circumventing a problem often associated kéthel learning.

3.2 Metric Learning Algorithm

Given the connection stated above, we can use the methofistmgolve (3). Since the output of
the low-rank kernel learning algorithm 1§, and we prefet4 in its factored formiW 7 W for most
applications, no additional work is required beyond rugrtime low-rank kernel learning algorithm.

Our metric learning algorithm is given as Algorithm 1; eacimstraint projection cost9(d?) per
iteration and requires no eigendecomposition. Thus, aatite of the algorithm (i.e., looping
through allc constraints) require8(cd?) time. Note that a naive implementation would cOgtd?)
time per iteration (because of the multiplicatiin), but the Cholesky factorization can be com-
bined with the matrix multiplication into a singte(d?) routine, leading to the more efficief cd?)
per iteration running time.

The low-rank kernel learning algorithm which forms the kdsi Algorithm 1 repeatedly computes
Bregman projections, which project the current solutiotoansingle constraint. By employing the
Sherman-Morrison-Woodbury inverse formula appropnatilis projection—which generally has
no closed-form solution—can be computed analytically. lrenmore, it can be computed efficiently
on a low-rank factorization of the kernel matrix.

4 Discussion

In this work we formulate the Mahalanobis metric learningldem in an information-theoretic
setting and provide an explicit connection to low-rank lerearning. We now briefly discuss
extensions to the basic framework, and we contrast our appnith other work on metric learning.

We consider finding the Mahalanobis distance closest todkellme Euclidean distance as measured
by differential relative entropy. In some applicationsniy be more appropriate to consider finding
a Mahalanobis distance closest to some other baselinexdone, one could use the Mahalanobis
distance parametrized by the sample covariance métes a baseline, in which case the resulting
Burg divergence problem becomes a minimizatiorDgf,g( A, S). We note that extensions of this
sort can be solved by variants of our proposed framework.



ALGORITHM 1: Algorithm for information-theoretic metric learning

ITMETRICLEARN(X, S, D, u,1)
Input: X: inputd x n matrix, S: set of similar pairs,D: set of dissimilar pairsy, [:
distance thresholds
Output: W: output factor matrix, wher®/TW = A
1.SetW =1 and)\;; =0Vi,j
2. Repeat until convergence:
e Pick a constrainti, j) € Sor (i,j) € D
e Letv” be rowi of X minus row; of X
e Set the following variables:
1. w=Wov
2. if (similarity constraint)

B=7/(1~-llwl3)
elseif (dissimilarity constraint)
v = min ()\ij, % — m)
B =—y/(1+7lwl3)
3. >\ij = Aij -7
e Compute the Cholesky factorizatidil” = I + fww™
o SetlWW — LTW
3. Returni/

We consider simple distance constraints for similar ansiadigar points, though it is straightforward
to incorporate other constraints. For example, Schutz aachims [8] consider a formulation where
the distance metric is learned subject to relative nearoesstraints on the input points (as in,
the distance betweenand j is closer than the distance betweeand k). Our approach can be
adapted to handle this setting. In fact, it is possible t@iporate arbitrary linear constraints into
our framework.

Finally, our basic formulation assumes that there existsagible point that satisfies all of the dis-
tance constraints, but in practice, this may fail to hold. ili@e extension to our framework can
incorporate slack variables on the distance constrairtiamale such infeasible cases.

4.1 Related Work

Xing et al. [11] use a semidefinite programming formulation learning a Mahalanobis distance
metric. Their algorithm aims to minimize the sum of squaristishces between input points that are
“similar”, while at the same time aiming to separate the Siisilar” points by a specified minimum
amount. Our formulation differs from theirs in two respeéisst, we minimize a Burg-divergence,
and second, instead of considering the sum of distortiors digsimilar points, we consider pairs
of constrained points.

Weinberger et al. [10] formulate the metric learning probli@ a large margin setting, with a focus
on kNN classification. They formulate the problem as a sefimide programming problem and
consequently solve it using a combination of sub-gradiestent and alternating projections. Our
formulation does not solely have kNN as a focal point, antedifsignificantly in the algorithmic
machinery used.

The paper of Globerson and Roweis [4] proceeds to learn a [siablais metric by essentially
shrinking the distance between similar points to zero, apdeding the distance between dissimilar
points to infinity. They formulate a convex optimization plem which they propose to solve by
a projected-gradient method. Our approach allows moreesfinterpoint constraints than just a
zero/one approach.



Chopra et al. [1] presented a discriminative method basquhoa of convolutional neural networks.

Their method aims to learn a distance metric, wherein therpoiint constraints are approximately
enforced by penalizing large distances between similantpar small distances between dissim-
ilar points. Our method is solved more efficiently, and thastmints are enforced incrementally.
Furthermore, as discussed above, by including slacks ooomstraints, we can accommodate “soft-
margin” constraints.

Shalev-Shwartz et al. [9] consider an online metric leagrsetting, where the interpoint constraints
are similar to ours. They also provide a margin interpretatsimilar to that of [10]. Their formula-
tion considers distances between all pairs of similar agsiighilar points, whereas we consider only
a fixed set of input pairwise constrained points.

Other notable work includes the articles [2, 5, 7, 8]. Cramateal. [2] applies boosting to kernel
learning, for a connection of our method kernel learning Seetion 3. Lanckriet et al. [7] study
the problem of kernel learning via semidefinite programmi@gldberger et al. [5] proposed neigh-
borhood component analysis to explicitly aid kNN; howetee, formulation is non-convex and can
lead to local optima.
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