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Distance Metric Learning

e Many (un)supervised machine learning algorithms rely on a
distance measure (metric) which compares examples.

e Unless the problem structure strongly specifies this metric
a-priori, the preferred approach is to learn the metric along
with the rest of the parameters based on the training set.

o © %,
e Today I'll focus on semi-parametric 0 .
classifiers, e.g. KNN, SVMs, Gaussian o °® :0 o
Processes, Markov Networks, ... ° o:
e Given a labelled data set {x;, C;}, how
should we learn a metric d|x;, x5| that will l

give good generalization when used in

such a classifier? Xl“\’i
X2



Basic Classifiers Perform Annoyingly Well
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Abstract. This article reports an empirical investigation of the accuracy of rules that classify examples on the
basis of & single attribute. On most datasets studied, the best of these very simple rules is as accurate as the
rules induced by the majority of machine learning systems. The article explores the implications of this finding
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1. Introduction

The classification rules induced by machine learning systems are judged by two criteria:
their classification accuracy on an independent test set (henceforth “accuracy™), and their
complexity. The relationship between these two criteria is, of course, of keen interest to
the machine learning community.



Instance/Memory Based Classification

15-Nearest Neighbor Classifier

e Instance based classifiers are
simple yet surprisingly
effective.

e Decision surfaces are
nonlinear.

e Non(semi)-parametric, so high
capacity without training.

e Quality of predictions
automatically improves with
more data.

(Asymptotically optimal.)

¢ Only a few parameters to tune, . =3
usually by simple optimization. °




Problems with Semi-Parametric Classification

®
e What does “nearest” mean? Xl ?

Need to specity a distance XZ

metric on the input space.

e Computational cost: must store and
search through entire training set at

test time. <2 o
(In low dimensional input spaces, o
this can be alleviated by thinning I B
training set and building fancy data .

structures like KD-trees.) ! - ,

e Today I'll discuss how to learn local distance metrics;
and if you need to, how to significantly reduce computation
cost at the expense of often small performance loss.
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Link with Feature Extraction/Data Transformation

e We can either think of our goal as learning the metricQ = A" A
or as learning a linear transformation/feature sety = Ax.

AXZ

> X1

e In general, if we are learning a set of features y;.(x) we can
always fix a simple distance measure D|-, -| (e.g. Euclidean) and
use this to define our distance measure d on the original input
space z via d[x1,X2] = D|y(x1),y(x2)].



Cross Validation for Metric Learning?

e Consider K-NN classification as an example.
e Q: What is the right distance metric for KNN classification?

A: The one that optimizes test error! o ° e
*°9°*
e Let’s try to approximate this by ° - x’oo
the one which optimizes training error, " o o
defined using leave-one-out cross validation. o ©

e S0 if I gave you a finite set of distance metrics to chose between
(and I told you K), you could pick the best one.

e Obvious next question: if I gave you a continuously
parameterized family of metrics to search through, could you
find the one which maximizes LOO classification performance?

e And what about K...?



Cross-Validation Performance is Hard to Optimize

e Classification performance on held-out data is a very difficult
cost function to optimize with respect to a distance metric.

e Why? Because LOO error is a highly discontinuous function of
the distance metric and thus of the underlying parameters if
the metric is from a continuous family.

e In particular, an infinitesimal change in the metric can alter the
neighbour graph and thus change the validation performance
by a finite amount.

e We need a smoother (or at least continuous) cost function.



Stochastic Neighbour Selection

e [dea: instead of picking a fixed number !
K of nearest neighbours, and voting o o
their classes, select a single neighbour . °
stochastically, and look at the expected .%Ij.xj *
votes for each class. ° 8

e Imagine that each point i selects other points j as its neighbour

with a probability p;; based on the softmax of the distance d;;:
e U

> i€k

e The fraction of the time that ¢ will be correctly labeled is:

=D D

Jj€C;

pii =0

Pij



Expected Leave-One-Out Error

e The expected leave-one-out classification performance is:
1
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e This is the objective function we will try to maximize during
learning. It is much smoother with respect to the distances
{d;;} than the actual leave one out classification error.

e Notice that there is no explicit parameter /<.
(More on this later.)



Quadratic Metrics < Linear Transforms

e Now the idea is to learn the metric by adjusting the d;; so as to
maximize the expected stochastic classification score ¢.

e We will restrict ourselves to the simplest possible metrics,
namely quadratic (Mahalanobis) distance measures:

dij = (z; — x;) Q(z; — z)
where z; is the input vector for the i” training case and
Q is a symmetric, positive semi-definite matrix.
e We can rewrite this using the eigendecomposition of Q:
dij — (ZL‘Z — :Cj)TATA(ZCi — :C])
= (A:CZ — AZC])T(ASCZ — AZIZ‘])
= (i —yj) Wi — )
e In other words, this is exactly equivalent to applying a simple
(spherical) Euclidean metric to the points {y; = Az;}.



Optimizing Expected Performance

e We want to maximize the expected classification performance:

Y 2 Z/ﬁéz

1 7€l
where d;; = (Az; — Az;) ' (Az; — Ax)).

e The gradient with respect to the transformation matrix A is

oY _ _QAS‘ S‘ Dij :z:w:z:ZT] — ZP@/@%W@T]{

IS0 k

where z;; = (z; — x;) and C} is the class of point ..

e An equivalent but more efficiently computed expression:

g—f} - QAZ Z pzkxzkx@k p Z p@]:cwa:w

7 k>C; 1€l




Neighbourhood Components Analysis (NCA)

e Learns a linear transformation A of the input space after
which nearest neighbour performs well.
The transformation scales up directions which are useful for
discrimination and almost projects out dimensions which are
not informative about class identity.

e In particular, optimize the expected classification performance
—(Ax;— Ax]) (Az;—Aux;)

Y Y sz A:Ck) (AZCZ—AZCk)

7] ]EC Zk#l

using your favourite aggressive optimizer.

e Use the learned A to project the training set, and store y; = Axz;.

o At test time, compute ytest = Axtest and perform NN
classification on ;.4 using a simple Euclidean norm.

e But what about K ...?



Scale of Transformation A is also learned

e Notice that not only the relative directions of the rows of A but
also the overall scale of A is being learned.

e This means that we are effectively learning a real-valued
estimate of the optimal neighbourhood size.

e Estimate = average effective perplexity of distributions p;;:

K =exp(— Y pijlogpij/N) or (1/N)) exp(— ) pijlogpij)
1) [ J
o [f the learning procedure wants to reduce the effective
perplexity (use fewer neighbours) it can scale up A uniformly;
similarly by scaling down all the entries in A it can increase the
perplexity of and effectively average over more neighbours
during the stochastic selection.

e We can use this average perplexity as our K /e at test time.
Even better, we can use local estimates of K /e¢ (hard using CV).



Low Rank Metric = Nonsquare A

e Nothing in the above setup prevents us from restricting A to be

a nonsquare matrix of size d x D.

e In this case, the learned metric will be low rank, and the
transformed inputs will lie in a lower dimensional space R*.

e Possible extra benefits beyond
learning KNN distance metric:

—If d < D we can seriously reduce
storage/computation requirements
at test time by storing only the
projections of the training points
yn = Axy and using a KD-tree.

—If d =2 or d = 3 we can do (linear!)
visualization.

X2
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Illustration: Concentric Rings

e Synthetic data, 2 dimensions contain concentric rings,
all other dimensions contain noise:

LDA

NCA

PCA




Toy Data: UCI Wine

e UCI “Wine”, N=178, D=13, 3 classes. Half train, half test.
e Test errors using d=D=13, and K chosen by LOO:

Euclidean=30%;Whiten=25%;NCA=7%
o ©
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e Test errors using KNN in 2D: LDA=28%; PCA=31%; NCA=5%



Face Data

e Grayscale images of faces taken from frames of a 20x28 video.
(18 people as class labels, D=560, N=100 for training, 900 test).

e Test errors using d=D=560, and K chosen by LOO:
Euclidean=18%;Whiten=22%;NCA=4%

.. LDA

NCA

PCA

e Test errors using KNN in 2D: LDA=25%; PCA=37%; NCA=5%



Related Objective Functions

e The (log of) the original NCA objective maximizes the expected
number of correct labels:

zlogZpZ logy‘yz e

1 JeC;

e We could also maximize the expected log probability of correct
classification, which is the chance of a perfect labelling:

= Zlogpz Zlog Z
1

0 ]EC

e Results are very similar with this cost for clean data.
But for data with outliers, the original cost is more robust.

e There is one more variation which is interesting:




Geometric Intuition — Class Collapsing

e A good metric is one under oo o '/4
which points of the same —e N &°
class look close to each - e A
other and look far from all o ° o
points in different classes. ., .?’

e Under this intuition, a “perfect” metric would collapse all
points in the same class to a single point and simultaneously
push all points of other classes infinitely far away.

e Of course, this assumes each class distribution is unimodal, but
doesn’t assume all classes have the shape.

¢ To convert this geometric intuition into profit, we will enlist the
help of probability theory to obtain a convex numerical
optimization problem.



Maximally Collapsing Metrics (MCM)

e What would the “ideal” metric A" A do to the data?

It would make the distances between all points of the same
class look very small (assuming unimodality) and the distances
between all points of differing classes look very large.

e If this were actually achieved, then our stochastic nearest
neighbour method would induce the following distribution:

ideal, . Jconst if  C;=C;
= (ot =G
e Here's the idea: Let’s find A' A by minimizing the average KL

divergence from this “ideal” distribution to the actual
distribution induced by A:

mmZ KL[p"(j]i)|[p™ (j10)]

e Good news: the above objective is convexin A"A.



MCM Learning is a Convex Optimization Problem

e The set of symmetric positive definite matrices is a convex set.

e As well, the KL objective above is convex in the metric Q !
(But not in the transformation A itself.)

KL = H(p Z log p(j ) + Z d +Zl@gz —d;.
?J

i,J: y(i) 1,5:y(7)=y(i ) l ki

e Consequence: there is a single, Well-defmed, globally optimal
“maximally collapsing metric” Q* for any (non-trivially)
labelled dataset (in general position). (Assuming we add a
small amount of regularization for the norm or trace of Q.)

e We can find it by various methods (as far as I know the
optimization problem above does not have a common name).

e For the experiments I'll show, we just used gradient descent
followed by projection back onto the PSD cone.



Relationship to Fisher’s Discriminant (LDA)

e MCM is similar to Fisher’s Discriminant (LDA) in that it tries to
minimize within class distances (variance) and maximize
between class distances.

e But LDA is a purely second order (“Gaussian”) method; it
depends only on the mean of each class and on covariance of
points within the same class.

e MCM is a generalization of LDA that makes only a much
weaker assumption, namely that each class is distributed as a
unimodal blob, which can be separated (under the right
metric) from the other class blobs.

e But (like LDA) MCM will fail, e.g. on

concentric rings. However, the P -

probabilistic setup can be extended g & "
to a mixture model with hidden : 9
variables giving an EM-like L. &

procedure to deal with this case.




Learning Low-Rank Collapsing Metrics

e Unfortunately, the set of matrices of rank at most k is not a
convex set. (Think of the average of two vector outer products.)

e Hence, the optimization problem no longer has the strong
guarantee of global optimality.

e There are two ways to proceed:

1. Find the optimal full-rank metric, and keep only its £ largest
eigenvalues, zeroing out all the others. This procedure is well
defined, and has no local minima. It will be close to optimal
if the full rank metric has a rapidly decaying eigenspectrum.

2. Explicitly parameterize the set of low rank matrices
(e.g. using the LU decomposition of Q) and optimize the KL
objective using traditional local search methods.

e We have experimented with both of these, and found them
both to give good results since often the exact metric has many
small singular values.



Results for 1-NN Classification & Eigen-Truncation

Error Rate
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Results for 1-NN Classification & Local-Search

Error Rate
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Initialized with LDA.

For most of these datasets each class is a single connected blob, we just need to

learn how to warp the space to separate the blobs nicely.



Conclusions: NCA and MCM Learning

e In the absence of strong prior knowledge of how to pick your
classification distance metric, learning seems like a good idea.

e [earning low rank metrics gives a natural way to reduce
memory & computation while still doing well on classification.

e NCA assumes nothing about:
— the form of the class distributions
(e.g. Gaussian, connected, convex)
— the shape of the separating surface
(e.g. linear, linear in feature space)

e MCM assumes unimodality for each
class, but gives a convex objective

e Very surprising how far you can go with just linear mapping.
Hard to overfit, compact to represent, fast at test time.
It turns out extremely good linear mappings exist, and now we
have a handle on how to find them.



Kernel Maximally Collapsing Metrics

e Kernelization: by adding the term Trace[Q] to the objective, we
can get a function which depends only on dot products of
transformed input vectors and hence learn a metric function
(of size N x N) for use with any Mercer kernel.



MCM Dual is Constrained Entropy Maximization

e Our convex optimization problem has an equivalent convex
dual, which in this case is constrained entropy maximization:

maX ZH (7]7)] s.t. Zp(j]i)zl Vi and

p(jli) i,j=1...n

ZE vﬂv Z vﬂv =0 wvj=x;—x

e Each pomt wants to hedge its bets over neighbours as much as
possible under Q without accruing more variance than it
would accrue if it used all the same-class points as neighbours.

e The matrices E,;; )[vﬂv ;] play the role of the within-class and
between-class covariances, but are computed at each point not
just once per class.

e Computationally, dual is much less attractive since it scales as
the square of the number of datapoints.



What does the metric “look like”?




