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Résumé

Dans cette thèse, nous explorons l’utilisation de techniques d’apprentis-

sage automatique pour la recherche d’information. Plus précisément, nous nous

intéressons au problème de l’ad-hoc retrieval qui consiste à chercher les do-

cuments pertinents à une requête dans de grands corpus. Ce problème est

généralement résolu à travers une tâche d’ordonnancement. Étant donnée une

requête, le système de recherche d’information ordonne les documents du cor-

pus avec l’objectif de produire une liste ordonnée dans laquelle les documents

pertinents apparaissent avant les autres.

Dans un contexte d’apprentissage automatique, nous nous sommes intéressés

à proposer des algorithmes d’apprentissage qui puissent bénéficier de données

d’entrâınement afin d’identifier un ordonnateur capable d’atteindre une perfor-

mance élevée pour des documents et des requêtes non disponibles lors de l’ap-

prentissage. Ce problème présente des défis nouveaux comparé aux problèmes

traditionnels d’apprentissage automatique, tels que la catégorisation ou bien

la régression. En effet, notre tâche est un problème d’ordonnancement, ce qui

implique que la mesure de l’erreur pour une requête ne peut être exprimée

comme la somme des coûts reliés à chaque document. Également, notre tâche

correspond à un problème déséquilibré puisque seulement une très petite par-

tie du corpus est pertinente pour chaque requête. De plus, l’ad-hoc retrieval

présente un double problème de généralisation puisque le modèle doit à la

fois être appliqué à de nouveaux documents mais également à de nouvelles

requêtes. Finalement, notre tâche présente aussi des contraintes d’efficacité de

calcul puisque l’ad-hoc retrieval est généralement appliqué à de grands corpus.

L’objectif premier de cette thèse est l’apprentissage discriminant de modèles

pour l’ad-hoc retrieval. Dans ce contexte, nous proposons plusieurs approches

basées sur des machines à noyaux ou sur des réseaux de neurones spécifiquement



ii Résumé

adaptés à différents problèmes de recherche d’information. Les modèles pro-

posés sont basés sur différents algorithmes d’apprentissage en ligne permettant

un apprentissage efficace sur de grands ensembles de données.

La première partie de ce document s’intéresse à la recherche d’informa-

tion textuelle. Pour ce faire, nous adoptons une formulation classique de cette

tâche, et ordonnons les documents selon une estimation de leur similarité avec

la requête. La mesure de la similarité entre textes est donc un aspect crucial

dans ce cadre. Nous proposons donc une approche pour apprendre une mesure

de similarité entre textes. Notre stratégie d’apprentissage ne repose pas sur

un large ensemble de requêtes et de documents pertinents correspondants car

ce type de données étant particulièrement coûteux à annoter est rare. Au lieu

de cela, nous proposons d’utiliser un corpus hypertexte, dont les hyperliens

fournissent une information de proximité sémantique entre documents. Ce pro-

tocole correspond donc à un transfert d’apprentissage, où nous bénéficions de

l’information fournie par les hyperliens pour améliorer la performance sur la

tâche de recherche d’information.

Ensuite, nous nous intéressons à un autre problème de recherche d’informa-

tion : la recherche d’images à partir de requêtes textuelles. Notre approche pro-

pose d’optimiser un critère lié à la performance d’ordonnancement. Ce critère

est dérivé du critère utilisé dans notre travail précédent concernant l’apprentis-

sage de similarité textuelle. Ce choix conduit à une approche d’apprentissage

basée sur la performance finale, mesurée sur la tâche de recherche d’informa-

tion. Notre approche est donc différente des méthodes usuelles qui s’intéressent

généralement au problème final indirectement, à travers une tâche d’annotation

d’images. De plus, notre algorithme d’apprentissage s’appuie sur des travaux

récents concernant l’apprentissage en ligne de machine à noyaux. Ainsi, nous

obtenons un algorithme permettant un entrâınement sur de grands ensembles

de données et pouvant bénéficier de noyaux récemment introduits pour la com-

paraison d’images.

Dans la dernière partie de la thèse, nous montrons que le critère utilisé dans

les précédents problèmes considérés peut être appliqué à la tâche de repérage de

mots-clés (le repérage des mots-clés correspond à la détection de mots-clés dans

des séquences de parole). Pour obtenir un formalisme d’ordonnancement, nous

proposons un modèle qui doit produire une liste ordonnée d’enregistrements

de parole en réponse au mot-clé soumis. Cette liste doit idéalement placer les

enregistrements contenant le mot-clé avant les enregistrements ne contenant

pas le mot-clé. Il est intéressant de constater que notre formalisme conduit à

un critère maximisant directement l’aire sous la courbe ROC (Receiver Opera-
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ting Curve), qui est la mesure la plus communément utilisée pour l’évaluation

des techniques de repérage de mots-clés. Ce critère est ensuite utilisé pour ap-

prendre un modèle approprié à cette tâche séquentielle. Ce modèle est appris

grâce à un algorithme dérivé de celui précédemment introduit pour la tâche de

recherche d’image.

En conclusion, cette thèse introduit des techniques d’apprentissage statis-

tique pour la recherche d’information. Nous proposons des modèles d’appren-

tissage pour plusieurs contextes multimodaux : la recherche de documents tex-

tuels à partir de requêtes textuelles, la recherche d’images à partir de requêtes

textuelles, ainsi que la recherche des séquences de parole à partir de mots-clés

écrits. Nos solutions reposent sur des approches discriminantes et des algo-

rithmes d’apprentissage au coût de calcul réduit. Dans tous les cas, nous faisons

un parallèle entre les méthodes proposées et l’état de l’art, puis nous mesurons

l’amélioration apportée grâce à des comparaisons expérimentales.

Mots-Clés : apprentissage automatique, recherche d’information, apprendre

à ordonner, apprentissage discriminant, apprentissage en ligne, recherche de

textes, recherche d’images, repérage de mots-clés dans les enregistrements vo-

caux.
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Abstract

In this thesis, we explore the use of machine learning techniques for in-

formation retrieval. More specifically, we focus on ad-hoc retrieval, which is

concerned with searching large corpora to identify the documents relevant to

user queries. This identification is performed through a ranking task. Given

a user query, an ad-hoc retrieval system ranks the corpus documents, so that

the documents relevant to the query ideally appear above the others.

In a machine learning framework, we are interested in proposing learning

algorithms that can benefit from limited training data in order to identify a

ranker likely to achieve high retrieval performance over unseen documents and

queries. This problem presents novel challenges compared to traditional learn-

ing tasks, such as regression or classification. First, our task is a ranking prob-

lem, which means that the loss for a given query cannot be measured as a sum

of an individual loss suffered for each corpus document. Second, most retrieval

queries present a highly unbalanced setup, with a set of relevant documents

accounting only for a very small fraction of the corpus. Third, ad-hoc retrieval

corresponds to a kind of “double” generalization problem, since the learned

model should not only generalize to new documents but also to new queries.

Finally, our task also presents challenging efficiency constraints, since ad-hoc

retrieval is typically applied to large corpora. The main objective of this thesis

is to investigate the discriminative learning of ad-hoc retrieval models. For

that purpose, we propose different models based on kernel machines or neural

networks adapted to different retrieval contexts. The proposed approaches rely

on different online learning algorithms that allow efficient learning over large

corpora.

The first part of the thesis focus on text retrieval. In this case, we adopt a

classical approach to the retrieval ranking problem, and order the text docu-
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ments according to their estimated similarity to the text query. The assessment

of semantic similarity between text items plays a key role in that setup and

we propose a learning approach to identify an effective measure of text similar-

ity. This identification is not performed relying on a set of queries with their

corresponding relevant document sets, since such data are especially expensive

to label and hence rare. Instead, we propose to rely on hyperlink data, since

hyperlinks convey semantic proximity information that is relevant to similarity

learning. This setup is hence a transfer learning setup, where we benefit from

the proximity information encoded by hyperlinks to improve the performance

over the ad-hoc retrieval task.

We then investigate another retrieval problem, i.e. the retrieval of images

from text queries. Our approach introduces a learning procedure optimizing

a criterion related to the ranking performance. This criterion adapts our pre-

vious learning objective for learning textual similarity to the image retrieval

problem. This yields an image ranking model that addresses the retrieval prob-

lem directly. This approach contrasts with previous research that rely on an

intermediate image annotation task. Moreover, our learning procedure builds

upon recent work on the online learning of kernel-based classifiers. This yields

an efficient, scalable algorithm, which can benefit from recent kernels developed

for image comparison.

In the last part of the thesis, we show that the objective function used in

the previous retrieval problems can be applied to the task of keyword spotting,

i.e. the detection of given keywords in speech utterances. For that purpose, we

formalize this problem as a ranking task: given a keyword, the keyword spot-

ter should order the utterances so that the utterances containing the keyword

appear above the others. Interestingly, this formulation yields an objective di-

rectly maximizing the area under the receiver operating curve, the most com-

mon keyword spotter evaluation measure. This objective is then used to train

a model adapted to this intrinsically sequential problem. This model is then

learned with a procedure derived from the algorithm previously introduced for

the image retrieval task.

To conclude, this thesis introduces machine learning approaches for ad-hoc

retrieval. We propose learning models for various multi-modal retrieval setups,

i.e. the retrieval of text documents from text queries, the retrieval of images

from text queries and the retrieval of speech recordings from written keywords.

Our approaches rely on discriminative learning and enjoy efficient training pro-

cedures, which yields effective and scalable models. In all cases, links with prior

approaches were investigated and experimental comparisons were conducted.
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1 Introduction

1.1 Motivations

The history of Information Retrieval (IR) parallels the development of li-

braries. The first civilizations had already come to the conclusions that efficient

techniques should be designed to fully benefit from large document archives.

As early as 5,000 years ago, the Sumerian librarians were already describing

and categorizing official transaction records, legends and theological documents

in indexes [Kramer, 1958]. Thematic indexes have then remained the main

mean of accessing archived items for centuries. Only recently, IR has radi-

cally changed with the advent of computers. Digital technologies provide a

unified infrastructure to store, exchange and automatically process large doc-

ument collections. The search for information consequently evolved from the

manual examination of brief document abstracts within predefined categories

to algorithms searching through the whole content of each archived document.

Nowadays, automatic retrieval systems are widely used in several application

domains (e.g. web search, book search or video search) and there is a constant

need for improving such systems. In this context, Information Retrieval is an

active field of research within Computer Science. This thesis is concerned with

one of the main tasks of IR, the so-called ad-hoc retrieval task which aims at

finding the documents relevant to submitted queries. This problem is generally

formalized as a ranking problem: given a query, the retrieval system should

rank the documents, so that the items relevant to the query appear above the

others. In this context, we focus on machine learning to automatically identify

effective ranking function from limited training data.

Machine Learning proposes and studies algorithms that allow computer

systems to improve automatically through experience, i.e. from training data.

Learning systems are commonly used for several perception tasks, such as au-
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tomatic face detection [Viola and Jones, 2001] or automatic speech recogni-

tion [Rabiner and Juang, 1993]. The application of Machine Learning to ad-hoc

retrieval is attractive, as it is difficult to hand-design effective ranking functions.

Moreover, large collections of documents, which provide useful information for

learning retrieval models, are readily available. The use of learning techniques

for ad-hoc retrieval is however not straightforward, as this task presents sev-

eral difficulties compared to traditional learning problems, such as regression or

classification [Bishop, 2006]. First, our task corresponds to a ranking problem,

which implies that the performance for a given query cannot be formalized

as a sum of a measure of performance evaluated for each corpus document.

Second, most retrieval queries present an highly unbalanced setup, with a set

of relevant documents accounting only for a very small fraction of the corpus.

Third, ad-hoc retrieval corresponds to a kind of “double” generalization prob-

lem, since the learned model should not only encounter new documents but also

new queries. Finally, our task also presents challenging efficiency constraints,

since ad-hoc retrieval is typically applied to large corpora.

Certainly due to these obstacles, the Machine Learning community has only

started devising specific solutions for retrieval ranking in the recent years (see

next chapter) and learning techniques are not yet pointed to as potential tools

in most reference books on Information Retrieval [Baeza-Yates and Ribeiro-

Neto, 1999; Grossman and Frieder, 2004; Witten et al., 1999].

1.2 Organization & Contributions

The remainder of this document is divided into five chapters. Next chapter,

Chapter 2, introduces the necessary background on Information Retrieval and

the application of Machine Learning to this domain. The following chapters

(Chapter 3, Chapter 4 and Chapter 5) are dedicated to our contributions. Each

chapter presents an ad-hoc retrieval problem and proposes a learning algorithm

to benefit from available training data.

Chapter 3 proposes an approach to learn a measure of similarity between

texts from a hyperlinked corpus. Our approach assumes that hyperlinks

convey information about document proximity, and it learns a measure

assigning a higher similarity to linked documents than to unlinked do-

cuments. In a transfer learning setup, we apply the learned measure on

ad-hoc retrieval problems, to rank documents according to their similar-

ity with respect to the query. These experiments show that our approach

allows the retrieval problem to benefit from the proximity information
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encoded by the hyperlinks. Different aspects of this research have been

published in [Grangier and Bengio, 2005a] and [Grangier and Bengio,

2005b].

Chapter 4 focuses on ranking images with respect to text queries and intro-

duces a discriminative model for this task. The model parameters are

learned so that the relevant images should appear above the others in the

final retrieval rankings. This approach contrasts with previous research

that mostly relies on an intermediate task, automatic annotation, in or-

der to address this problem. Our experiments over stock photography

data show the advantage of focusing directly on the final task. This re-

search has yield several publications [Grangier et al., 2006a,b; Grangier

and Bengio, 2006, 2008].

Chapter 5 formalizes the keyword spotting as a retrieval problem. This task,

which aims at identifying whether a given keywords is uttered in a speech

recording, is generally evaluated through the area under the receiver op-

erating curve. We first show that maximizing this area is equivalent to

ranking speech utterance so that the utterances containing the targeted

keyword appear above the others. This allows us to apply the learning

procedure introduced in the previous chapter to learn a model adapted to

this sequential problem. This yields a discriminative keyword spotter that

compares favorably with generative alternatives based on Hidden Markov

� D. Grangier and S. Bengio. Inferring document similarity from hyperlinks. In ACM

Conference on Information and Knowledge Management (CIKM), pages 359–360, Bremen,

Germany, November 2005a.

� D. Grangier and S. Bengio. Exploiting hyperlinks to learn a retrieval model. In NIPS

Workshop on Learning to Rank, pages 12–17, Whistler, Canada, December 2005b.

� D. Grangier, F. Monay, and S. Bengio. Learning to retrieve images from text queries

with a discriminative model. In International Workshop on Adaptive Multimedia Retrieval

(AMR), pages 42–56, Geneva, Switzerland, July 2006a.

� D. Grangier, F. Monay, and S. Bengio. A discriminative approach for the retrieval of

images from text queries. In European Conference on Machine Learning (ECML), pages

162–173, Berlin, Germany, September 2006b.

� D. Grangier and S. Bengio. A neural network to retrieve images from text queries. In

International Conference on Artificial Neural Networks (ICANN), volume 2, pages 24–34,

Athens, Greece, September 2006.

� D. Grangier and S. Bengio. A discriminative kernel-based model to rank images from

text queries. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI).,

2008. (in press).
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Models. This work has resulted in the following publications, [Keshet

et al., 2007a; Grangier and Bengio, 2007].

These chapters (Chapter 3, Chapter 4 and Chapter 5) hence correspond to re-

viewed and published papers, which have been rewritten in a unified framework.

Finally, Chapter 6 draws conclusions about this work and outlines potential fu-

ture directions of research.

� J. Keshet, D. Grangier, and S. Bengio. Discriminative keyword spotting. In International

Workshop on Non-LInear Speech Processing (NOLISP), pages 47–50, Paris, France, May

2007a.

� D. Grangier and S. Bengio. Learning the inter-frame distance for discriminative

template-based keyword detection. In International Conference on Speech Processing (IN-

TERSPEECH), pages 902–905, Antwerp, Belgium, August 2007.
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This chapter introduces some of the foundations of information retrieval

and machine learning necessary to understand the rest of the dissertation work.

The chapter begins with a discussion on information retrieval techniques and

retrieval evaluation. It then moves to machine learning, and reviews how ma-

chine learning techniques have been applied to information retrieval problems.

2.1 Information Retrieval

Information Retrieval (IR) is concerned with finding the documents that

answer a specific information need within a given corpus. This task is generally

addressed through document ranking: the user inputs their information need as

a query, and the IR system outputs a ranking, in which the documents relevant

to the query should appear above the others.

IR research studies different aspects of this problem, which can mainly be

grouped into three categories: ranking functions, data structures and user in-

terfaces. Ranking functions are concerned with estimating the relevance of

a document with respect to a query, so that the documents can be ordered

according to these estimates. Data structures are concerned with storing the

corpus in a form that allows a fast estimation of the ranking function. User

interfaces are concerned with designing an intuitive interface to query the sys-

tem and to presents the resulting rankings. In this thesis, we focus solely on

ranking functions.

In this section, we present the most common framework for ranking text

documents from text queries, the vector space model. We then present how a

similar framework can be used to retrieve other types of documents, such as

images or speech recordings. Finally, we describe the standard methodology to

evaluate retrieval systems.
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2.1.1 Text Retrieval in the Vector Space Model

In text retrieval applications, the user is interested in retrieving text docu-

ments from a text query. For that purpose, an IR system typically performs

a three-step process: text normalization, text representation and document

ranking. Normalization removes any variability in the data that is not help-

ful for retrieval. Indexing gives to each document and query a representation

suitable to the ranking function. Ranking takes as input the query and the

documents in their indexed form and ranks the documents according to the

ranking function.

Normalization applies stopping and stemming to documents and queries.

Stopping eliminates functional words (e.g. articles, conjunctions, pronouns)

and other topic neutral words, which are considered useless for retrieval. Stem-

ming substitutes each inflected form of a word by its stem (e.g. connected,

connection and connects will be replaced by connect). After normalization,

documents and queries are available as sequences of index terms. The set of all

index terms allowed by an IR system is called the vocabulary.

In the vector space model [Salton et al., 1975], indexing represents each

document with a bag-of-words vector. This representation neglects word order-

ing and assigns each document a vocabulary-sized vector, the ith component

of a document vector being the weight of the ith term of the vocabulary in the

document. For a given document d, this weight di is computed from statistics

of the occurrence of term i in d and in the rest of the corpus. The weight-

ing strategy is typically designed so that the terms that better describes the

document content are assigned higher weights. Different strategies have been

proposed for that purpose [Luhn, 1958; Salton and Buckley, 1988], including

the popular tf · idf weighting. In this case, the weight di of term i in document

d is computed as

di = tfi,d · idfi,

where tfi,d refers to the number of occurrences of i in d, idfi = − log(ri)

refers to the inverse document frequency of term and ri refers to the fraction of

documents in the corpus that contain i. On one hand, tf ensures that the terms

occurring frequently in a document are considered as better content descriptors

than the terms occurring rarely. On the other hand, idf ensures that the terms

appearing in few documents receive high weights, as those terms are more

discriminative to distinguish between the topics of the documents. Similarly

to documents, queries are also assigned a vector representation, relying on

the same weighting scheme. Further discussion on term weighting and the

description of more refined weighting strategies is differed to Chapter 3.
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After indexing, ranking takes as input the indexed corpus D, along with

the query vector q, and outputs a ranking in which the documents relevant to q

should appear above the others. In order to perform this ranking, each corpus

document d is assigned a score f(q, d) according to a ranking function f , and

the documents of D are then ordered by decreasing scores. f hence measures

the matching between a document and the query. Its output is commonly

referred as the Retrieval Status Value (RSV) of a document with respect to the

query [Baeza-Yates and Ribeiro-Neto, 1999]. In the context of the vector space

model, the vector dot-product is commonly used as the ranking function, i.e.

∀(q, d) ∈ RT × RT , f(q, d) = q · d =
T∑

i=1

qi di,

where T refers to the number of allowed terms, i.e. the vocabulary size.

Also, the cosine similarity is often discussed in the literature [Baeza-Yates and

Ribeiro-Neto, 1999; van Rijsbergen, 1979], which is actually equivalent to the

vector dot-product if one considers normalizing the L2 norm of the document

vectors during indexing.

This dot-product RSV considers that the matching between a document

and a query should be high when their vector representations have their high-

est weights assigned to the same components. This means that the RSV of

a document is high when the terms that best describe its content are also

the terms that best describe the query content. This dot-product approach

is simple and has shown to be effective in various retrieval contexts [Salton

and Buckley, 1988; van Rijsbergen, 1979]. Furthermore, it offers a great ef-

ficiency advantage, when the vector representation of documents and queries

are sparse. In the case of tf · idf vectors, only the components corresponding

to terms present in the document or query are non-zero. This means that the

RSVs of all documents in the corpus can be computed efficiently by only exam-

ining the components of the document vectors corresponding to the few query

terms. Inverted indexes allows to quickly access to such data by storing, for

each term i, the list of documents containing i along with the corresponding

weights [Harman et al., 1992].

Relying on dot products of sparse vectors has however some drawbacks,

including term mismatch and sub-optimal weighting. Term mismatch means

that this approach does not take into account any correlation between terms:

i.e. a query and a document with no term in common will be considered as

completely unrelated, even if it is a possible to express the same topic using

different terms, such as synonyms. Sub-optimal weighting means that the func-

tion assigning the term weights is not the best possible function relying on term
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occurrence statistics, when one is interested in maximizing the retrieval per-

formance. In the context of machine learning for IR, different strategies have

been proposed to circumvent those limitations. Discussion on these approaches

is differed to Section 2.2.

2.1.2 Retrieving Multimedia Documents

The previous section has presented an approach to search for text documents

within large corpora. However, several application domains, such as broadcast

news, stock photography or ancient manuscript archives, collect other types of

documents in the form of audio recordings, images or videos and the application

of retrieval techniques to non-textual data is hence of a great interest for such

cases.

In order to search within non-textual datasets, different query interfaces

have been devised. For instance, it has been proposed to search an image

dataset by providing a query image [Smeulders et al., 2000], or a sketch [Ra-

jendran and Shih-Fu, 2000]. However, such interfaces require a significant effort

from the users, either to identify an image describing their needs, or to draw a

query. Hence, text querying seems a better alternative from a user perspective.

Also, most people are already used to efficiently search large textual corpora

from text queries and would like to benefit from a similar interface to access

to collections of pictures, audio recordings or videos, as illustrated by the de-

sign choice of retrieval services like [YouTube] for videos, [Corbis] for images

or [Google Book Search] for scanned documents.

In the case of text querying, popular retrieval approaches rely on the use of

texts that can be extracted from the original data. Automatic Speech Recog-

nition (ASR) [Jelinek, 1998], Optical Character Recognition (OCR) [LeCun

et al., 1998a] or image auto-annotation techniques (see Chapter 4) extract text

data that are then used by a text retrieval system as a proxy for the original

media. This two-step process, i.e. text extraction followed by text retrieval,

has several advantages. First, it allows to benefit from the abundant research

performed for the context of text retrieval. It also benefit from well-established

text extraction techniques [Bunke and Wang, 1997; Jelinek, 1998; LeCun et al.,

1998a]. Indeed, approaches based on this scheme have shown to yield effective

solutions [Garofolo et al., 2000; Smeaton et al., 2006], even when the extraction

process introduces a significant amount of errors in the resulting text [Garo-

folo et al., 1999; Vinciarelli, 2004]. Such a strategy is also appealing from an

efficiency perspective since the costly text extraction operations are performed

offline, i.e. before query submission, while only efficient text retrieval opera-
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tions are performed online, i.e. after query submission, when the user interacts

with the system.

However, these types of approaches also have some drawbacks, mainly be-

cause the text extraction process has not been optimized specifically for re-

trieval. For instance, speech recognizers are designed to achieve a low word

error rate (the edit distance between the system output and and a manually-

produced transcription). This objective is different from maximizing the per-

formance of a retrieval system relying on ASR outputs. Indeed, alternative

approaches relying on lattices, which summarize the confidence of the ASR sys-

tem for several alternative transcriptions, are currently investigated [Mamou

et al., 2007]. In this dissertation, Chapter 4 addresses this problem in the con-

text of image retrieval and proposes a model which learns the parameters of

the annotation model in order to maximize the retrieval performance.

2.1.3 Retrieval Evaluation

The goal of a retrieval system is to enable its users to access the relevant ma-

terial of a given corpus through a querying interface. For that purpose, the

output of an IR system given a query q is a ranking of documents in which

the documents relevant to q should appear above the others. Retrieval evalua-

tions hence measure how close the obtained ranking is to this ideal condition.

Different measures have been proposed to quantify this effectiveness. Most of

them are based on precision and recall.

Precision and recall assume that the evaluated strategy has retrieved a set

of documents S(q) and compare this set to the set of relevant documents R(q):

precision is defined as the percentage of retrieved documents that are actually

relevant:

Pr(q) =
|R(q) ∩ S(q)|
|S(q)|

(2.1)

while recall is defined as the percentage of relevant documents that have been

retrieved:

Rec(q) =
|R(q) ∩ S(q)|
|R(q)|

. (2.2)

Precision and recall hence evaluate a set of retrieved documents S(q). For

a retrieval ranking, they are measured at each rank n, considering that the

set of retrieved documents S(q) corresponds to the documents ranked above

position n. These quantities, Prn(q) and Recn(q) measured at each rank n, can

then be summarized by a Precision versus Recall curve, which plots precision

as a function of recall. This type of plot is generally reported in retrieval

benchmarks, such as Text REtrieval Conference (TREC) [Voorhees, 2006], and
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can be useful to choose a system for different recall requirements. However,

comparing curves is not a reliable way to compare retrieval approaches. As

an alternative, different quantities have been defined, based on Prn(q) and

Recn(q). In the following, we introduce precision at top 10, break-even point

and average precision, which correspond to the most commonly used measures

to evaluate IR systems [Baeza-Yates and Ribeiro-Neto, 1999].

Precision at top 10 (P10) corresponds to Pr10. It evaluates the percentage

of relevant documents within the top 10 positions of the ranking. This is a

widely-used measure, which evaluates the percentage of relevant material a

user would encounter on the first 10–result page of a search engine. Although

it is easy to interpret, this measure tends to overweight simple queries with

many relevant documents when averaging over a query set. For such queries, it

is easier to rank some relevant documents within the top 10, simply because the

relevance set is larger and not because of any property of the ranking approach.

One should also note that the optimum of this measure is lower than 100% for

queries with less than 10 relevant documents.

Break-Even Point (BEP), also called R-Precision [Aslam and Yilmaz,

2005], measures the percentage Pr|R(q)| of relevant documents within the top

|R(q)| ranking positions, where |R(q)| is the number of relevant documents for

the evaluated query q. Contrary to P10, this measure does not overweight

queries with many relevant documents.

Average Precision (AvgP) is the primary measure used in retrieval bench-

mark [Baeza-Yates and Ribeiro-Neto, 1999; Voorhees, 2006]. It corresponds to

the average of the precision at each position where a relevant document ap-

pears,

AvgP(q) =
1

|R(q)|
∑

d∈R(q)

Prrk(q,d))(q),

where rk(q, d) is the rank of document d for query q. It can also be shown that

AvgP corresponds to the area under the Precision versus Recall curve [Buckley

and Voorhees, 2000]. This means that AvgP also corresponds to the averaged

precision performance, assuming a flat prior over the recall requirements.

The above presented measures, P10, BEP and AvgP, evaluate the perfor-

mance over one query and are commonly averaged over a set of test queries,

to estimate the expected performance the user will encounter when submitting

a new query. This set of test queries is considered unavailable during system

development. This avoids biasing design choices toward a specific set of eval-

uation queries, which would makes the measured average a poor estimator of

the expected performance over a newly submitted query.
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In this dissertation, we only consider binary relevance judgments, i.e. a

document is either relevant or non-relevant, since it corresponds to the most

common setup in the retrieval literature [Baeza-Yates and Ribeiro-Neto, 1999].

However, in some cases, human assessors further provide a gradual relevance

judgment along with their binary decision. Different measures, such as Dis-

counted Cumulative Gain [Jarvelin and Kekalainen, 2000], have been proposed

to evaluate IR systems relying on this information. We refer to [Voorhees, 2001]

for further discussion on this issue.

2.2 Machine Learning for Information Retrieval

Machine Learning (ML) studies algorithms that learn to solve data pro-

cessing tasks given a limited set of data samples. For instance, some learning

algorithms aim at removing noise from recorded speech, learning from a set

of noise-free speech recordings [Attias et al., 2001], other approaches aim at

discriminating between male and female faces in photographs, learning from

a set of male and female face pictures [Moghaddam and Ming-Hsuan, 2002],

etc. Learning approaches are widely-used in pattern recognition problem, such

as speech recognition, fault detection or fingerprint recognition [Bishop, 2006],

since the human process yielding the desired decision is difficult to formalize

mathematically.

In this dissertation, we focus on the learning of ranking functions for IR

systems. This means that we are interested in identifying a ranking function f

from a set of training data, such that its expected performance on a new ranking

problem is high. Two main types of learning approaches have been applied in

this context, supervised and unsupervised learning. In the case of supervised

learning, the training data consist of both documents and queries along with the

corresponding relevance assessments. This means that the learning procedure

should generalize to a new ranking problem, while having access to the desired

output on the training data. In the unsupervised case, the training data simply

consists in a set of documents, without queries and relevance assessments. As

the learning procedure has no access to examples of the desired strategy, it

should discover some hidden structure of the data, from which it is possible to

identify an effective ranking function.

In this section, we first review unsupervised approaches and we then present

supervised approaches, as this order is more meaningful from a chronological

perspective.
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2.2.1 Unsupervised Learning

The unsupervised learning of ranking functions only requires a set of documents

for training, without queries and relevance assessments. This is appealing since

large document corpora are readily available at virtually not cost, while the

collection of queries and relevance assessments requires an expensive labeling

process [Baeza-Yates and Ribeiro-Neto, 1999]. Therefore, several unsupervised

models have been proposed in the literature. The following reviews the most

influential approaches.

Latent Semantic Analysis

Latent Semantic Analysis (LSA) aims at modeling term correlation [Deerwester

et al., 1990], to overcome the term mismatch problem (see Section 2.1.1). For

instance, one of LSA’s goals is to assign a high RSV to a document which does

not use any query term, but only related terms or synonyms. For that purpose,

LSA assumes that the vocabulary-sized vectors actually originate from a lower

dimensional space (k < T , the vocabulary-size), to which orthogonal noise has

been added. Given a set of n training documents, represented as a matrix

D = [d1, . . . , dn] ∈ RT×n,

LSA solves the least square problem,

Dk = argminX:rank(X)=k ||D −X||22. (2.3)

and replaces D with Dk = [dk
1 , . . . , dk

n] as the “denoised” representation of

documents. The solution of Equation (2.3) can be found through Singular

Value Decomposition (SVD), for which efficient iterative algorithms can be

applied [Trefethen and Bau, 1997]. The original LSA paper [Deerwester et al.,

1990] proposes to select k through validation, i.e. picking the k value which

maximizes the performance over a set of development queries. It also devises a

way to denoise test queries, which are not available when solving Problem (2.3).

The substitution of D with Dk actually projects each document to a k-

dimensional subspace, and LSA hence assumes that the term mismatch prob-

lem can be solved through linear projection. Rank lowering is expected to

merge the dimensions corresponding to terms occurring often in similar con-

texts. Previous works [Deerwester et al., 1990] have shown that this strategy

can indeed improve retrieval results in some cases. However, LSA is rarely re-

ported to improve performance when used alone and the LSA-derived RSV is

often linearly combined [Dumais, 1995] to the standard RSV presented in Sec-

tion 2.1.1. There is however no guarantee that the solution of the least square
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problem (2.3) yields a better RSV according to standard retrieval measures,

see Section 2.1.3. Actually, some reported results [Hofmann, 2001] have shown

worse IR performance with LSA than with the initial data.

Subsequently to LSA, other approaches based on linear algebra have been

proposed [Kolda and O’Leary, 2004; Li and Shawe-Taylor, 2007; Tsuge et al.,

2001; B. et al., 2003]. For instance, Kernel Canonical Correlation Analysis,

KCCA [Li and Shawe-Taylor, 2007], relies on a bi-lingual corpus to learn a

lower rank representation of the data. This approach takes a corpus where

each document is available in two languages and recursively identifies pairs of

directions in both language vector space. The pairs of directions are selected

such that the projections of each document in both languages are maximally

correlated. After this process, documents and queries can be projected onto the

subspace spanned by the identified directions of the corresponding language,

and this new representation is used for retrieval. Although KCCA has been

introduced for bi-lingual retrieval, this approach has also shown to be useful

for monolingual setup, since the measure of correlation among languages avoids

modeling grammatical specificities of a language, but rather focuses on semantic

terms [Vinokourov et al., 2003].

Besides linear algebra, several probabilistic models have also been proposed

to model term correlation and solve the term mismatch problem, as explained

in the following.

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis, PLSA [Hofmann, 2001], proposes a

probabilistic interpretation of the notion of topics in text documents to ad-

dress the term mismatch problem. PLSA assumes that the documents can be

decomposed as a mixture of aspects, where each aspect defines a multinomial

over the vocabulary terms. In this model, documents and terms are considered

as the observation of two discrete random variables D and T . The occurrence

of a term t in a document d corresponds to the observation of the pair (t, d),

which is modeled by the joint probability

P (t, d) =
∑

i

P (zi)P (t|zi)P (d|zi), (2.4)

where the discrete random variable Z, of values z1, . . . , zk, is called the aspect

variable. PLSA hence assumes that the term variable T is conditionally in-

dependent from the document variable D, given the aspect variable Z. The

parameters of the model, i.e. P (zi), P (t|zi), P (d|zi) for all aspects zi, all vocab-

ulary terms t and all corpus documents d are learned to maximize the likelihood
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of the pairs (t, d) occurring in the training corpus, relying on the Expectation

Maximization (EM) algorithm [Hofmann, 2001]. Similarly to LSA, the PLSA

paper suggests to select the number of aspect k through validation and also

devises an approach to estimate p(q|zi),∀i for a new query q, unavailable at

training time. In a retrieval context, PLSA then proposes to compute the RSV

of a document d with respect to query q as

f(q, d) =
∑

i

P (zi|q)P (zi|d),

which corresponds to the expected likelihood kernel [Jebara and Kondor, 2003]

between the aspect distributions in the document and in the query.

Several similarities can be found when comparing PLSA and LSA. Both

models have been proposed to solve the term mismatch problem, by modeling

the correlation between the occurrence of terms. Compared to LSA, PLSA

relies on a probabilistic framework, which introduces normalization constraints

on the parameters and replaces the mean square problem with a maximum

likelihood problem. In fact, LSA aims at minimizing the Euclidean distance

between the original data matrix and its lower rank surrogate, while PLSA aims

at minimizing the Kullback-Leibler divergence between the empirical training

distribution and the model distribution, as shown in [Hofmann, 2001]. There

is no theoretical justification to prefer one criterion or the other in an IR con-

text, i.e. in order to derive a ranking function which achieves higher retrieval

effectiveness. It has however been shown that PLSA can be more effective than

LSA on different corpora [Hofmann, 2001].

Besides this empirical advantage, the statistical framework of PLSA also al-

lows systematic model combination in a Bayesian scheme, and the combination

of several PLSA models relying on different numbers of aspects has shown to

be effective [Hofmann, 2005]. The main drawback of PLSA is also related to its

statistical foundation: PLSA derives its parameters from simple word counts

and does not allow the direct use of more effective weighting scheme [Salton

and Buckley, 1988] during learning, which is not the case for LSA.

Subsequently to PLSA, other latent topic models have been introduced [Blei

et al., 2003; Gruber et al., 2007; Blei and Lafferty, 2005]. Latent Dirichlet Al-

location, LDA [Blei et al., 2003], proposes a more consistent probabilistic ap-

proach compared to PLSA. Instead of relying on a document-dependent mix-

ture, the distribution of topics within a document is assumed to be sampled

from a Dirichlet distribution shared across documents. This means that LDA

is a true generative model from which unseen documents can be sampled from

the model. The dependency of topic distribution in documents introduced by
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the Dirichlet prior also allows better regularization of the model, compared to

PLSA that requires modifications of the training procedure to avoid overfit-

ting [Hofmann, 2001]. Building upon LDA, the Hidden Topic Markov Model,

HTMM [Gruber et al., 2007], introduces a Markovian dependency between the

latent topics generating successive words, which hypothesizes that subsequent

words of a document are more likely to share the same topic. Correlated Topic

Model, CTM [Blei and Lafferty, 2005], is a further example of a latent topic

model. It introduces a dependency between topics, acknowledging that the

presence of one latent topic might be correlated with the presence of another

topic.

These models hence make different dependence assumptions to model term

correlation, and then rely on maximum likelihood estimation for parameter

learning. Parameter selection is hence not performed according to an objective

related to the final retrieval problem. Like for the least square objective of

LSA, there is no guarantee that the parameters maximizing the training data

likelihood would achieve a high ranking performance. This problem is in fact

generic to unsupervised learning: on one hand, unsupervised learning can ben-

efit from plentiful unlabeled data, while, on the other hand, this framework

does not strongly tie the learning objective and the final task performance.

In the next section, we present the supervised learning framework, which has

the opposite characteristics, since this framework requires training queries and

relevance assessments to optimize a learning objective closely related to the

retrieval performance.

2.2.2 Supervised Learning

In the recent years, information retrieval has enjoyed a rising interest from the

web search companies. This resulted in higher budget for manual data anno-

tation, i.e. the definition of queries and the assessment of document relevance.

Consequently, different supervised approaches relying on this type of data have

been proposed. In the following, we review the most influential models pro-

posed in this context.

Pair Classification

Pair classification formalizes the learning of ranking functions as a binary clas-

sification problem. Given a query q and a document d, the ranking function

f should determine whether (q, d) is a positive pair, i.e. d is relevant to q, or

a negative pair, i.e. d is not relevant to q. This formalization of the problem
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allows the retrieval community to benefit from the abundant research on the

learning of classification models [Bishop, 2006].

This framework has been applied relying on different types of classifiers,

such as neural networks [Mandl, 2000] or decision trees [Hatzivassiloglou et al.,

1999]. However, this initial research did not foster a long term effort on pair

classification for information retrieval. The lack of labeled data at that time

might explain this failure. However, this framework also suffers two main weak-

nesses, unbalanced classification and inter-query discrimination. Unbalanced

classification refers to a binary classification problem for which one class is

predominant. In the case of the classification of query/document pairs, the

negative class is predominant and the positive pairs account only for a very

small fraction of the whole pair set. For instance, TREC retrieval datasets

present less than 1% positive pairs [Voorhees, 2006]. This characteristic is a

problem for most classification approaches which aim at maximizing the classi-

fication accuracy (the percentage of correctly classified pairs), since the useless

model that always predicts the negative class would achieve more than 99%

accuracy. In fact, problems with ∼ 10% positive examples already constitute a

challenging unbalanced classification setup, for which specific learning solutions

are being devised [Grandvalet et al., 2005]. Inter-query discrimination refers

to an intrinsic problem of the pair classification framework, which presents a

more difficult problem to the classifier than the actual retrieval task. In this

framework, the classifier should output a positive score f(q, d) > 0 for any pos-

itive pair (q, d) and a negative score f(q′, d′) < 0 for any negative pair (q′, d′).

However, in retrieval rankings, only the scores of the documents for the same

query need to be compared (see Section 2.1.1), and there is hence no need to

discriminate between (q, d) and (q′, d′), when q′ 6= q. In fact, this framework

ignores that each query presents its own document classification problem, and

attempts to solve all problems with the same classifier. In the following, we

describe ordinal regression, which proposes to circumvent these shortcomings.

Ordinal Regression

Ordinal regression refers to the problem of predicting an ordering over a set of

input items. Recommender systems is an instance of such a problem. In this

case, the user orders their movies, books or music albums according to their

preferences, and the system should predict a preference ordering over a large

inventory of unseen items. Formally, the input to such a problem consists in a

set of labeled training examples,

Strain = {xi, yi}Ni=1,
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where for all i, xi is vector from a space X , and yi is an integer preference value

between 1 and m. The labels express an order preference, i.e. given (xi, yi)

and (xj , yj), yi > yj means that xi should be ranked above xj . The training

algorithm then learns a function,

h : X → R,

whose output should ideally indicate preference, i.e. for all (x, y) and (x′, y′)

in X × {1, . . . ,m},
y > y′ ⇔ h(x) > h(x′).

For that purpose, solutions based on Support Vector Machines (SVMs) [Her-

brich et al., 2000] and boosting [Freund et al., 2003] have been proposed. They

both aim at minimizing an upper bound on the number of swapped training

pairs, i.e. the number of training pairs (i, j) for which h(xi) ≤ h(xj) while

yi > yj .

The retrieval setup differs from this standard ordinal regression framework,

since each query presents a different ordinal regression problem and the model

needs to generalize to both new queries and new documents. Formally, an IR

system should order the corpus documents such that the relevant documents

appear above the others, for any query. This means that the ranking function

f should satisfy,

∀q, ∀(d+, d−) ∈ R(q)×R(q), f(q, d+) > f(q, d−), (2.5)

where R(q) refers to the relevant corpus documents and R(q) refers to the

non-relevant corpus documents. The Ranking SVM model (RSVM) [Joachims,

2002] builds upon SVMs for ordinal regression [Herbrich et al., 2000] and in-

troduces an approach to learn ranking functions for retrieval. In this model,

the ranking function is parameterized as

∀(q, d), fw(q, d) = w · φ(q, d),

where w is a parameter vector from a space F and φ(q, d) is a vector of F
characterizing the matching between q and d. The parameter vector is selected

as the solution of

min
w
‖w‖22 + C LRSVM(w; Qtrain), (2.6)

where ‖w‖22 is a regularizer, LRSVM(w; Qtrain) is a loss function defined from

a set of training queries Qtrain and C is a hyperparameter controlling the reg-

ularization strength. The loss corresponds to

LRSVM(w; Qtrain) =
∑

q∈Qtrain

l(w; q)



18 State-of-the-Art

where l(w; q) measures the loss on the ordinal regression problem corresponding

to query q,

l(w; q) =
∑

(d+,d−)∈R(q)×R(q)

max
(
0, 1− fw(q, d+) + fw(q, d−)

)
.

This query specific loss is an upper-bound on the number of swapped pairs for

the query ranking,

l(w; q) ≥
∑

(d+,d−)∈R(q)×R(q)

1fw(q,d+)≤fw(q,d−)

since for all (q, d+, d−),

max
(
0, 1− fw(q, d+) + fw(q, d−)

)
≥ 1fw(q,d+)≤fw(q,d−),

where 1· denotes the indicator function.

Hence, the optimization problem (2.6) selects the ranking function as a

trade-off between minimizing LRSVM(w; Qtrain), which implies minimizing the

total number of swapped pairs over the rankings of all training queries, and hav-

ing a regular model, with a small norm ‖w‖. The hyperparameter C controls

this trade-off. This regularization scheme is introduced to prevent overfitting,

i.e. the case where the model would achieve high ranking performance over the

training data while performing poorly over unseen test data. In fact, the regu-

larization strategy of the ranking SVM presents theoretical guarantees toward

high generalization performance as discussed later in Chapter 4.

Compared to pair classification, this ordinal regression framework presents

several advantages. First, the training strategy does not rely on the classifi-

cation error, but on the number of swapped pairs in rankings, which is more

adapted to unbalanced setups [Cortes and Mohri, 2003] like retrieval. Second,

losses such as LRSVM avoid comparing the output of the learned ranking func-

tion among queries, and hence does not suffer the inter-query discrimination

problem. In fact, RSVM and related approaches [Burges et al., 2005] have

shown to yield high performance [Joachims, 2002; Schultz and Joachims, 2003;

Burges et al., 2005] over various retrieval problems. On the negative side, the

optimization of losses like LRSVM can become very costly for large document

sets, as it relie on a sum over the pairs of documents with different labels.

Direct Optimization of Ranking Measures

In the ordinal regression framework, the model parameters are selected to min-

imize the number of swapped pairs in rankings, i.e. the number of times a
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non-relevant document appear above a relevant one. This strategy is directly

derived from the definition of the retrieval ranking problem (2.5). However,

the number of swapped pairs in a ranking is rarely used as a measure of re-

trieval quality. Instead, measures such as P10, AvgP and BEP are generally

used, see Section 2.1.3. Therefore, different approaches have been proposed

to directly optimize such measures [Joachims, 2005; Yue et al., 2007; Le and

Smola, 2007]. These approaches relies on the framework of SVM for structured

prediction [Tsochantaridis et al., 2005] and maximize a convex lower bound on

such measures.

Learning structured prediction aims at finding a mapping gw from an input

space X to an output space Y, given a labeled training set

Strain = {xi, yi}Ni=1 ∈ (X × Y)N .

Learning is performed to minimize the loss

LStruct(gw, S) =
N∑

i=1

∆(y, gw(xi)),

where ∆(y, y′) ≥ 0 measures the cost of predicting y′ instead of y. The struc-

tured prediction framework is not tied to a specific type of cost but provides a

generic framework to minimize any loss that can be formalized as LStruct. For

that purpose, the learning of gw is reduced to learning a real valued function

hw over the joint input-output space X × Z, and gw is defined as,

∀x ∈ X , gw(x) = argmaxz∈Z hw(x, z). (2.7)

The function hw is parameterized as,

∀(x, z) ∈ X × Z, hw(x, z) = w ·Ψ(x, z),

where w is a parameter vector and Ψ(x, z) is a set of features extracted from

(x, z). The parameter vector w is selected as the solution of

minw ‖w‖22 + C

N∑
i=1

ξi, (2.8)

s.t. ∀i ∈ {1, . . . , N},
∀z ∈ Z, hw(xi, zi)− hw(xi, z) ≥ ∆(zi, z)− ξi,

ξi ≥ 0,

where C is an hyperparameter controlling the regularizer strength. In Prob-

lem (2.8), it can be shown that the slack variables ξ bound the cost, i.e.

∀i, ξi ≥ ∆(zi, argmaxz∈Z hw(xi, z)),
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which means that the minimization of
∑N

i=1 ξi yields the minimization of

LStruct(gw, S). Problem (2.8) can be solved efficiently through the cutting

plane method [Tsochantaridis et al., 2005]. This technique iterates through

the examples and requires to solve

max
z∈Z

hw(xi, z) + ∆(zi, z). (2.9)

at each iteration. Hence, structured prediction approaches should take care

that both training and testing are computationally tractable. This means that

the choice of Ψ and ∆ should take into account that the maximizations required

by (2.7) and (2.9) can be solved efficiently.

For retrieval rankings, a structured prediction model takes as input a pair

x = (q, D), composed of query q and a document set D, and outputs a per-

mutation z over the elements of D. It aims at minimizing a cost ∆ equal to

1 − M , where M corresponds to a standard retrieval measure such as P10,

BEP [Joachims, 2005] or AvgP [Yue et al., 2007]. The choice of Ψ(q, D, z)

makes the function hw(q, D, z) decomposable, i.e.

φ(q, D, z) =
∑
d∈D

crk(z;d) φ(q, d),

where rk(z; d) refers to the rank of document d assigned by permutation z, ci is

a weight specific to a rank i and φ(q, d) is a vector characterizing the matching

between q and d like for the RSVM. This definition implies that

hw(q, D, z) = w ·Ψ(q, D, z)

= w ·
∑
d∈D

crk(z;d) φ(q, d)

=
∑
d∈D

crk(z;d) w · φ(q, d)

=
∑
d∈D

crk(z;d) fw(q, d),

where fw(q, d) corresponds to the same function as for the RSVM. Furthermore,

the weights c are selected as a decreasing function of the rank, i.e. ∀i < j, ci >

cj , which means that the maximization required to evaluate g,

gw(q, D) = argmaxz∈Z
∑
d∈D

crk(z;d)fw(q, d),

can be performed by ranking {fw(q, d),∀d ∈ D} decreasingly, like for the

RSVM. Hence, the structured prediction approach is identical to the RSVM at

test time, only the training procedure differs. The main difficulty for applying

structure prediction lies in the efficient resolution of (2.9) required for training.
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Specific algorithms have been recently proposed to solve this problem for the

optimization of various retrieval measures [Joachims, 2005; Yue et al., 2007; Le

and Smola, 2007]. These solutions are however expensive. For instance, the

SVM optimizing average precision requires a sort operation, i.e. O(|D| log |D|),
to solve (2.9), which is costly for large datasets as this operation is performed

at each training iteration.

SVMs for structure prediction is hence a way to optimize retrieval measures.

Other approaches based on neural networks [Burges et al., 2006] or gradient

boosting [Zheng et al., 2007] have also been proposed to maximize retrieval

measures focussing on the first positions of ranking. Overall, these approaches

are appealing, as their learning processes focus on the final goal [Vapnik, 1982].

However, training those models represents a costly optimization problem for

large document sets. In practice, they are hence applied only to re-rank the best

documents identified by another approach [Burges et al., 2006; Zheng et al.,

2007].

2.3 Conclusions

This chapter has presented the background for Information Retrieval. It

then introduced how Machine Learning has been applied to this domain, which

is the core topic of this thesis. This chapter stresses that the first learning

techniques specific to retrieval ranking have been introduced only recently, less

than a decade ago. Since then, retrieval problems have increasingly received

attention from the machine learning community, certainly due to the rising web

search business. IR problems are however far from being solved, and several

open issues remain. In the next chapters, we address some of these problems.

First, Chapter 3 presents how term weighting functions can be learned from

unlabeled text data with hyperlinks. Then, Chapter 4 addresses the problem

of retrieving images from text queries as a supervised ranking problem, which

significantly differs from previous approaches based on automatic annotation.

Finally, Chapter 5 builds upon the discriminative strategy proposed in Chap-

ter 4 to retrieve speech recordings from written keywords. This requires a

model specifically tailored to the sequential nature of this problem. Finally,

Chapter 6 summarizes the contributions of the thesis.
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3 Learning Text Similarity from Hyperlinked
Data

This chapter presents a method to infer an effective measure of similarity

between text items from an unlabeled hypertext corpus. This method is of

great interest in the context of text retrieval, where the assessment of similar-

ity plays a crucial role. In order to produce a ranking in which the documents

relevant to the submitted query appear above the others, IR systems generally

rank documents according to the output of a ranking function that estimates

the similarity between a query and a document, as explained in Chapter 2.

The identification of an effective measure of similarity is hence of crucial im-

portance to IR performance. This identification can be performed through

supervised learning relying on a large set of queries with their corresponding

relevant document sets. However, such data are scarce due to the high cost of

relevance labeling. As an alternative, this chapter proposes to rely on abundant

hyperlinked data for learning. Hyperlinks actually convey information about

the semantic proximity of documents, and we hypothesize that this proximity

information is close to the document/query relationships provided by relevance

assessments.

In the following, we introduce a neural network, LinkLearn, which learns a

similarity measure from the proximity information embedded in a hyperlinked

corpus. The link information is used solely for supervision at training time.

At test test time, the inferred function can be applied over any textual corpus,

with or without hyperlinks. The parameterization of our network is based on

the vector space model. LinkLearn computes the similarity between two text

items d and d′ as the dot-product between vocabulary-size vector, i.e.

f(d, d′) = d · d′.

In each vector d, the ith component di is computed through a weighting function

g, from the statistics of the occurrences of term i in d and in the whole corpus.
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Traditionally, [Salton and Buckley, 1988; Robertson et al., 1994], the weighting

function is hand-crafted to assign the highest weights to the terms that best

describes the document content. Alternatively, LinkLearn introduces a para-

metric weighting function gw, whose parameters are learned from hyperlinked

data.

This approach has several advantages. First, the semantic relationships

needed for training, hyperlinks, can be easily obtained without any additional

labeling effort. For instance, the experiments presented in Section 3.3 rely on

the online encyclopedia Wikipedia to train our model. Second, the parameter-

ization of LinkLearn allows for the use of fast techniques developed for sparse

vector comparison (e.g. inverted index files [Harman et al., 1992]), and the

model can hence be applied efficiently over large corpora (> 100, 000 docu-

ments). Finally, LinkLearn shows an empirical advantage when compared to

state-of-the art weighting techniques, such as Okapi [Robertson et al., 1994].

For instance, we report +11% improvement for P10 when comparing LinkLearn

to Okapi over TREC-9 queries [Voorhees, 2000].

The remainder of this chapter is divided into four sections: Section 3.1 intro-

duces LinkLearn, Section 3.2 relates our approach to previous work, Section 3.3

presents the experiments and results and Section 3.4 draws some conclusions.

3.1 LinkLearn

LinkLearn aims at learning a measure of text similarity from a hyperlinked

corpus. The learned model can then be applied to compare any text items,

with or without hyperlinks. It can notably be used to compare documents and

queries in the context of IR.

In the following, we first motivate the use of hyperlinks as an indicator of

semantic proximity and present a brief overview of methods already taking ad-

vantage of this characteristic. Then, we introduce the model parameterization

and its training procedure.

3.1.1 Semantic Proximity of Hyperlinked Documents

The concept of hyperlink is inspired by encyclopedia cross-references: both

provide authors with the possibility to refer to documents related to their

writings. Even if hyperlinks may be used for other purposes (e.g. navigational

links, advertising links, etc), it has been observed that they are mostly used

for their primary goal [Davison, 2000]. This observation is also supported by

previous research which relies on the semantic proximity of linked documents
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to improve the way document similarity is assessed.

In [Brin and Page, 1998], document expansion is performed using hyperlink

information: the weight of a term i in a document d is increased when i occurs

in documents pointing to d. This approach has shown to be especially useful

in the case of short documents whose retrieval is difficult without these added

terms [Brin and Page, 1998].

In [Richardson and Domingos, 2002], an alternative approach is adopted.

The document/query similarity is computed iteratively relying on the following

idea: the similarity between a document d and a query q should depend on

the similarity between q and the documents linked with d. Hence, in this

framework, a document which is connected to documents highly similar to q,

will itself be assigned a higher similarity with respect to q. This approach

extends of the PageRank algorithm [Page et al., 1998] and hypothesizes that,

among the documents having a content similar to the query, the most valuable

are those which are referred to by the others.

Probabilistic Latent Semantic Analysis, PLSA [Hofmann, 2001], has also

been extended to benefit from hyperlink data [Cohn and Hofmann, 2000]: a

link to a document d is considered as a kind of additional term ld and hence,

when computing document similarity, documents sharing pointers to the same

references are considered closer.

The above approaches modify the way document similarity is computed, so

that it considers linked web-pages as more likely to be about the same topic

than unlinked ones [Davison, 2000]. Our proposed approach LinkLearn shares

the same objective during training. However, LinkLearn aims at generalizing

to non-hyperlinked data, and only relies on hyperlinks as indicators of semantic

proximity for model learning. In that sense, our approach differs from previous

work.

3.1.2 Model Parameterization

LinkLearn aims at identifying a parameter vector w such that the measure of

similarity

simw : (a, b)→ simw(a, b),

generally considers linked documents closer than unlinked ones. For that pur-

pose, this section introduces the parametric form of simw, while next section

introduces the training procedure to select w.

The parameterization of simw is inspired from ad-hoc approaches proposed

for the vector space model, see Chapter 2. In LinkLearn, the similarity is
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assessed through the dot product of vocabulary-sized document vectors,

simw : a, b→
T∑

i=1

aw
i bwi ,

where T refers to the vocabulary size, and aw
i (resp. bwi ) refers to the weight

of term i in document a (resp. b). The weight of a term i in a document d is

computed as,

dw
i = gw(tfi,d, idfi, ndld)

where tfi,d is the term frequency of i in d, idfi is the inverse document fre-

quency of term i and ndld is the normalized length of document d. tf and idf

corresponds to the quantities defined in Section 2.1.1, while ndld corresponds

to ld/L, where ld is the length of d, ld =
∑T

i=1 tfi,d, and L corresponds to the

mean document length over the whole corpus from which d is extracted.

The specific form of gw is

gw(tfi,d, idfi, ndld) = 1{tfi,d 6=0} MLPw(tfi,d, idfi, ndld)

where MLPw denotes a Multi-Layered Perceptron (MLP) [Bishop, 1995]. The

parameterization of our model involves the indicator function, 1·. However, it

should be stressed that this does not prevent w → gw(tfi,d, idfi, ndld) to be a

continuous function of w, derivable everywhere.

Our similarity measure is based on dot-product matching, and therefore

inherits the main efficiency advantage of this framework in a retrieval context

(see Chapter 2, Section 2.1.1). The form of simw allows one to perform most of

the computations offline, i.e. before the user interacts with the system. In an

IR setup, all documents are generally available prior to query submission, and

our parameterization allows the computation of all the weights dw
i for each term

i and each document d before the query is available. Such a strategy favors the

IR system response time since only the query weights are computed after the

user submits the query. Furthermore, the term 1tfi,d 6=0 ensures that dw
i = 0,

when tfi,d = 0, i.e. when term i is not present in d. This property is of great

interest, regarding the efficient evaluation of simw. In fact, the evaluation of

simw(a, b) only requires to evaluate the MLP outputs for the terms present in

both documents, which is typically much smaller than 2 T , the total number

of components in a and b vectors. Moreover, this strategy also allows the use

of efficient data structure for sparse vectors [Harman et al., 1992].

In addition to these efficiency aspects, the proposed parameterization has

also good properties regarding generalization. The measure simw only relies on

simple features of term occurrences which makes it vocabulary-independent, i.e.
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the learned parameters are not linked to a specific term set and the function

simw inferred from one corpus can therefore be applied to another corpus, pos-

sibly indexed with a different vocabulary, as shown by our TREC experiments

in Section 3.3. This aspect is an advantage when comparing LinkLearn to other

data-driven approaches like PLSA [Hofmann, 2001] or Ranking SVM [Schultz

and Joachims, 2003] describerd in Chapter 2.

3.1.3 Model Criterion and Training

The objective of LinkLearn is to build a reliable text similarity measure from

a hyperlinked corpus. In such a corpus, links convey information about the

semantic proximity of documents. In particular, it has been observed [Davison,

2000] that, in most cases, a document d is semantically closer to a document

l+, hyperlinked with d, than to a document l−, not hyperlinked with d:

∀d, ∀l+ ∈ H(d),∀l− ∈ H(d), sim(d, l+)− sim(d, l−) > 0, (3.1)

where H(d) refers to the set of documents hyperlinked with d (i.e. the docu-

ments referring to d and the documents referred to by d), and H(d) refers to

the other corpus documents. This proximity relationships are of a great inter-

est for retrieval applications, since these kinds of relationships are analogous

to relevance assessments that state that a query q is semantically closer to a

document d+, relevant to q, than to a document d−, not relevant to q.

To benefit from such proximity information, we propose to learn w such

that simw satisfies most constraints (3.1) for a hyperlinked training dataset

Dtrain. For that purpose, we introduce a loss function that measures how close

simw is to the objective (3.1) and we select w that minimizes this loss.

A simple loss to minimize in this context would be the fraction of constraints

which are not satisfied,

L(w; Dtrain) =
1

|Dtrain|
∑

d∈Dtrain

L(w; d), (3.2)

where

L(w; d) =
1

|H(d)| · |H(d)|

∑
l+ ∈ H(d)

l− ∈ H(d)

1{simw(d,l+)−simw(d,l−)≤0}.

However, this loss is difficult to minimize directly since its gradient is null

everywhere. We hence propose to minimize an upper bound of this quantity:

LLinkLearn(w; Dtrain) =
1

|Dtrain|
∑

d∈Dtrain

LLinkLearn(w; d), (3.3)
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where

LLinkLearn(w; d) =
1

|H(d)| · |H(d)|

X
l+ ∈ H(d)

l− ∈ H(d)

max(0, 1− simw(d, l+)+ simw(d, l−)),

This loss is actually an upper bound of L since, for all x,

max(0, 1− x) ≥ I{x < 0}.

Furthermore, if there exists a minimum such that LLinkLearn(w; Dtrain) = 0, it

also implies that L(w; Dtrain) = 0, which means that all the constraints (3.1)

are satisfied.

The minimization of LLinkLearn can be performed through stochastic gra-

dient descent, i.e. we iteratively pick a document in Dtrain and update w

according to ∂LLinkLearn(w; d)/∂w, see Algorithm 3.1. This training strategy

both offers great scalability advantage, and robustness toward poor local min-

ima [LeCun et al., 1998b]. The hyperparameters of the model (i.e. the number

of hidden units in the MLP, the number of training iterations and the learning

rate) are selected through cross-validation (see Section 3.3).

Algorithm 3.1: Stochastic Training Procedure
Input: Training set Dtrain, learning rate λ, number of iterations Niter

Initialize w randomly.

foreach i in 1, . . . , Niter do

Sample d in Dtrain,

compute ∂LLinkLearn(w; d)/∂w,

update w← w + λ ∂LLinkLearn(w; d)/∂w.
end

Output: Parameter vector w

3.2 Related Work

LinkLearn combines ideas from previous research in information retrieval

and machine learning. This section first describes the links between the param-

eterization of LinkLearn and prior work on term weighting. It then describes

the links between our learning objective and approaches to learning to rank.

3.2.1 Prior Work on Term Weighting

The parameterization of our model relies on the vector space model [Salton

et al., 1975] and proposes to learn the term weighting function from data.
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Term weighting has been extensively studied in the retrieval literature [Salton

and Buckley, 1988; van Rijsbergen, 1979; Baeza-Yates and Ribeiro-Neto, 1999].

The goal of term weighting is to assign a real value weight di reflecting the

importance of term i as a content descriptor of document d.

In the early days of IR [Lancaster, 1979], such weights were simply binary

values, with di = 1 for each term i present in document d and di = 0 for

each term i absent from document d. In this case, the dot-product matching

between two documents d and d′,

sim(d, d′) = d · d′

is equivalent to counting the number of terms shared by d and d′.

Term weighting has then been extended to real-valued vectors [Cooper,

1988] in order to considers some terms as more important than others. Terms

occurring frequently in a document have been assigned higher weights, while

non-discriminative terms occurring in most documents have been assigned lower

weights. This strategy is notably embodied in the popular tf idf weighting

introduced in Chapter 2. Then, different refinements of this approach have

been investigated [Salton and Buckley, 1988]. These ad-hoc weighting strategies

propose different functions of the term occurrence statistics, with the objective

to improve the retrieval performance. Among them, Okapi BM25 is considered

as one of the most effective [Robertson et al., 1994]. In this case, the weight of

term i in document d is computed as

dOkapi
i =

(K + 1) · tfd,i · idfi

K · ((1−B) + B · ndld) + tfd,i
,

where (K, B) are two hyperparameters. The choice of (K, B) is generally per-

formed through cross-validation, i.e. the parameters are selected to maximize

the performance over a set of validation queries.

Like any hand-crafted weighting function, Okapi suffers from its simplic-

ity: the selection of two parameters only allows us to optimize the average

performance over a query set but prevents us from obtaining a function which

consistently reaches high performance for each query. This underfitting prob-

lem is hard to circumvent with manually designed weighting scheme.

LinkLearn addresses this problem and learns the weighting function from

data. Our approach is based on an MLP relying on the same inputs as Okapi.

Hence, considering that MLPs are universal approximators [Bishop, 1995], the

Okapi weights can even be computed in our framework. However, our strategy

allows to infer more complex functions through learning. Indeed, the capacity

of our model can be selected depending on the amount of data available for

training and the desired regularity of the learned function.
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3.2.2 Prior Work on Learning to Rank

Our approach aims at learning from proximity information such as

“document a should be closer to document b than it is to document c,”

which is also the objective of ranking SVM [Joachims, 2002]. For that purpose,

ranking SVM builds upon ordinal regression approaches such as [Freund et al.,

2003] or [Herbrich et al., 2000], as explained in Chapter 2. The parameteriza-

tion of the learned function is

fw(d, d′) = w · φ(d, d′)

where w is the parameter vector and φ(d, d′) is a vector characterizing the

match between d and d′. Hence, this linear parameterization has so far been

used either for combining existing matching measures [Joachims, 2002] or for

learning a weight per term [Schultz and Joachims, 2003]. This simple setup

could be extended to more complex parameterization with non-linear models

relying on kernels [Burges, 1998]. However, a richer parameterization would

certainly require a larger set of proximity constraints for training an effec-

tive model. This could be problematic as the observed training complexity of

Ranking SVM is O(|Ptrain|p), 2 < p ≤ 3, where |Ptrain| refers to the number of

training constraints [Joachims, 1998].

RankNet [Burges et al., 2005] is a gradient based approach to similarity

measure learning, which addresses this issue. It proposes a non-linear models

that can be trained efficiently, at the expense of relying on non-convex opti-

mization. Like Ranking SVM, RankNet is also trained from a set of proximity

constraints Ptrain,

∀(a, b, c) ∈ Ptrain, sim(a, b) > sim(a, c).

In this case, each (a, b, c) ∈ Ptrain can additionally be labeled with pa,b,c, the

probability that constraint (a, b, c) is actually true. This framework can be

helpful when, for instance, the constraints originate from several annotators

that may disagree. When such probabilities are not available, it can simply be

assumed that ∀(a, b, c) ∈ Ptrain, pa,b,c = 1.

RankNet learns a parameterized similarity measure relying on MLP,

simRankNet
w (d, d′) = MLPw(φ(d, d′)).
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Learning use gradient descent to minimize a Cross Entropy (CE) loss,

LCE(w; Ptrain) =
∑

(a,b,c)∈Ptrain

LCE(w; a, b, c), (3.4)

where LCE(w; a, b, c) = −pa,b,c log oa,b,c − (1− pa,b,c) log(1− oa,b,c),

and oa,b,c =
exp(simRankNet

w (a, b)− simRankNet
w (a, c))

1 + exp(simRankNet
w (a, b)− simRankNet

w (a, c))
.

Contrary to Ranking SVM, RankNet relies on gradient descent optimization [Le-

Cun et al., 1998b] and its training cost grows linearly with respect to |Ptrain|
which allows for its training over larger constraint sets. In practice, RankNet

has shown great scalability, reporting successful results over web data from a

commercial search engine [Burges et al., 2005].

Although the losses of Ranking SVM and RankNet are different, both cost

functions are related to margin maximization and ensure good generalization

properties [Rosset et al., 2004]. LinkLearn builds upon these two approaches

and proposes to minimize the pairwise hinge loss, like Ranking SVM, while

relying on gradient optimization, like RankNet. This choice yields a further

efficiency advantage compared to RankNet for training. In particular, the gra-

dient of the hinge loss  LLinkLearn is especially inexpensive to compute since the

constraints verifying

1− simw(d, l+) + simw(d, l−) < 0

yields null gradients, i.e.

∂

∂w
max(0, 1− simw(d, l+) + simw(d, l−)) = 0.

Hence, after a few iterations, the hinge loss yields a null gradient for most

constraints. This contrasts with RankNet for which each constraint yields

a non-zero gradient ∂LCE
a,b,c/∂w, which needs to be computed through back-

propagation [LeCun et al., 1998b].

3.3 Experiments and Results

This section presents two sets of experiments assessing LinkLearn. First,

LinkLearn is trained over a subset of the hyperlinked Wikipedia corpus [Wikipedia],

and is then tested over a disjoint subset of the same corpus. Second, the model

learned over Wikipedia is applied to a retrieval dataset from the TREC bench-

mark [Voorhees, 2000]. In both cases, we compared the learned term weighting

to Okapi weighting [Robertson et al., 1994].
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train valid test

Number of documents 150,625 150,625 150,625

Vocabulary size 229,003 227,018 230,198

Avg. number of terms per doc. 83.3 83.5 83.4

Avg. number of links per doc. 13.4 12.5 12.6

Table 3.1. The 3 subsets of the Wikipedia corpus (vocabulary size and number

of terms per document are measured after stopping and stemming).

3.3.1 Wikipedia Experiments

In the following, we first present the experimental setup for the Wikipedia

experiments and then describe the results.

Experimental Setup

Wikipedia consists of ∼ 450, 000 encyclopedia articles. In each article, the au-

thors refer to other related articles using hyperlinks. In order to evaluate the

generalization properties of our model, the corpus is randomly split into three

different parts, Dtrain, Dvalid and Dtest. This split results in three sets com-

posed of 150, 625 documents. For all documents, the links pointing to articles

in a different set are removed, so that each set can be used individually. Ta-

ble 3.1 summarizes set statistics. As a preprocessing step, all three sets are

stopped (i.e. common terms occurring in more than 10, 000 documents are

removed) and stemmed (i.e. each word is replaced with its stem, e.g. connec-

tion, connected are replaced with connect, using Porter’s algorithm [Porter,

1980]). Moreover, terms occurring only once in the corpus are also removed

since this greatly reduces the vocabulary size without any impact on document

comparisons.

The Dtrain and Dvalid sets are used during model training: Dtrain is used

for gradient descent (i.e. LLinkLearn is minimized over this set) while Dvalid

is used to select the model hyperparameters. In contrast, Dtest is considered

unavailable during training and is used solely for the final evaluation. This

evaluation relies on the task of Related Documents Search, considering each

document as a query for which the IR system should retrieve documents pre-

senting similar topics. This task corresponds to the “related pages” function

that exists in web search engines, such as Google. In our case, we assume

that the documents relevant to a given query documents d are the documents
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Okapi LinkLearn

Precision at top 10 21.5% 25.2% (+18%)

Break Even Point 36.6% 42.1% (+15%)

Average Precision 37.3% 43.8% (+17%)

Table 3.2. Results for the Related Document Search Task (Wikipedia Dtest

set), relative improvements are reported in brackets.

sharing a link with d. These relevance assessments are certainly correct since

the author of an encyclopedia article uses the links to point at related articles.

They are also certainly incomplete, since the author of an article may not refer

to all related articles. This weakness is however not specific to our labeling

hypothesis, since system pooling, the most common way to label datasets for

relevance used at TREC [Voorhees, 2006], also underestimate the relevance

set [Baeza-Yates and Ribeiro-Neto, 1999].

Hence, for each document d ∈ Dtest, we perform a retrieval ranking that

should ideally order the documents linked to d on the first positions. The

results of this task are evaluated to the three standard retrieval measures, P10,

BEP and AvgP, introduced in Chapter 2. The performance of our learned

weighting strategy is then compared with the performance of Okapi over the

same task, see Section 3.2. Like for LinkLearn, Okapi hyperparameters have

been selected over the Dvalid part of the corpus.

Results

Table 3.2 presents the results over the Dtest part of Wikipedia. According to all

measures, LinkLearn outperforms Okapi. In all cases, the relative improvement

is more than 15%. We further compare the results of LinkLearn and Okapi for

each of the 150, 625 query documents in order to verify whether the advantage

of LinkLearn could be due to a few queries. For that purpose, we apply the

Wilcoxon signed rank test [Rice, 1995] to check whether the sets of 150, 625

query results from LinkLearn and Okapi could have been drawn from two dis-

tributions having the same median. The test rejects this hypothesis with 95%

confidence for each retrieval measure, meaning that the observed improvement

is consistent over the query set.

Hence, these experiments show that a measure of document similarity in-

ferred from hyperlinked training data can be effective on a Related Document

Search task. This also underscores the fact that hyperlinks convey valuable
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N. of documents 24,823

N. of terms per doc. 63.8

Vocabulary size 45,188

Query Set Dev. Eval.

Query Set Id. TR-8 TR-9

N. of queries 50 50

Avg. n. of terms per q. 7.0 6.0

Avg. n. of rel. doc. per q. 35.1 41.0

Table 3.3. The TREC-9/TDT-2 Dataset (vocabulary size and number of

terms per document are measured after stopping and stemming).

information about the semantic proximity of documents from which the Link-

Learn model benefits. However, the Related Document Search experiments are

only a first evaluation of our model, and its assessment over ad-hoc retrieval

experiments is of greater interest as both LinkLearn and Okapi primarily target

such tasks.

3.3.2 TREC Experiments

In the following, we first present the experimental setup for the TREC experi-

ments and then describe the results.

3.3.3 Experimental Setup

The Text REtrieval Conference (TREC) defines different benchmark corpora

to assess IR system performance [Harman, 1993]. The data provided consists

of documents, queries and their corresponding relevance assessments. For each

document set, there are generally two sets of ∼ 50 queries: the development

set is intended for parameter tuning and the evaluation set is used to measure

the generalization performance.

In the following, we presents the results over the dataset referred as TREC-

9/TDT-2 [Voorhees, 2000]. This set consists of ∼ 25, 000 news documents,

with a vocabulary of ∼ 45, 000 words. Table 3.3 summarizes the set statistics.

Compared to the Wikipedia Related Document Search, the TREC data repre-

sents a more challenging task due to the brevity of its queries (∼ 6.5 words per

query). Our experiment over TREC data applies the LinkLearn model learned

over Wikipedia to this task, without re-training or adaptation. This experiment
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Okapi LinkLearn

Precision at top 10 38.8% 43.2% (+11%)

Break Even Point 30.3% 32.4% (+7%)

Average Precision 29.3% 30.6% (+4%)

Table 3.4. Results for the Retrieval task with TREC9 queries for TDT-2

corpus, relative improvements are reported in brackets.

aims at showing whether it is possible to benefit from the proximity information

conveyed by a hyperlinked corpus, even when targeting an application relying

on different type of data. Like for the previous experiments, we rely on Okapi

as the baseline term weighting approach. The development queries of TREC-9

have been used to select the hyperparameters of Okapi.

3.3.4 Results

Table 3.4 presents the results over the TREC data. This table agrees with

the results obtained over Wikipedia: LinkLearn yields to an improvement with

respect to Okapi according to the different performance measures (e.g. 11%

improvement for P10, 43.3% vs 38.8%). This shows that the similarity measure

derived from one training corpus (i.e. Wikipedia, a set of encyclopedia articles)

can be applied over a different corpus (i.e. TDT-2, a set of broadcast news

transcripts and newswire articles). This means that a retrieval task over a given

corpus, which may not even be hyperlinked, can benefit from large hypertext

datasets that can easily be found on the web nowadays.

As a final analysis of our approach, we compare the inferred LinkLearn

weighting with Okapi. Figure 3.1 shows the weight di of a term i in a document

d with respect to tfd,i, dfi and ld. For each plot, we vary only one of these

factors, keeping the other factors to their mean value. Moreover, the Okapi

value has been multiplied by a constant, so that both weighting scheme have

the same average. This scaling has no effect on Okapi results but helps reading

the plots.

These plots show that the inferred weighting (LinkLearn) and the one given

a-priori (Okapi) are close to each other which may highlight the appropri-

ateness of Okapi’s parameterization. However, the plots also highlight some

differences between the weighting schemes that could explain why LinkLearn

yields higher performance. The main differences are summarized below:

Term Frequency tf For low tf values (tf < 25), the term weight grows much



36 Learning Text Similarity from Hyperlinked Data

slower when tf increases for LinkLearn than for Okapi which means that

term repetitions (high tf) are considered more important in Okapi than

in LinkLearn.

Document Frequency df The term weights of the two approaches are sim-

ilar for low df but different for large df . In this case, Okapi gives more

weight to terms occuring in many documents, which means that gen-

eral terms have more influence on Okapi matching than on LinkLearn

similarity.

Document Length l The two weighting schemes are similar for short do-

cuments, while LinkLearn gives less weight to longer documents, which

may mean that long documents may contain a large amount of repetitions

about the same topic rather than being of richer content.

This analysis however only shows a partial picture since the most interesting

properties of LinkLearn certainly lie in the dependencies between the different

variables. Also, this analysis should be taken carefully, since even a slight

variation not appearing on these plots may have a large impact on document

ranking.

3.4 Conclusions

This chapter has introduced LinkLearn, an approach to derive a docu-

ment similarity measure from hyperlink information. As stated in previous

work [Brin and Page, 1998; Davison, 2000], links between documents can be

considered as an indicator of topical relatedness and a hyperlinked training cor-

pus provides valuable information to identify a reliable measure of similarity

between documents. The proposed approach could benefit text mining appli-

cations, like IR or document clustering [Baeza-Yates and Ribeiro-Neto, 1999]

in which the assessment of semantic similarity is a crucial point.

The proposed model infers a text similarity measure by learning the term

weighting function in the context of the vector space model. This function

is learned such that the resulting similarity simw considers linked documents

closer than unlinked ones. To achieve this goal, a learning objective inspired

by ranking SVM [Joachims, 2002] is optimized through gradient descent.

The proposed approach has been compared to the state-of-the-art similarity

measure used in Okapi systems [Robertson et al., 1994] over two different tasks.

In both cases, LinkLearn is trained over a subset of Wikipedia. Then, the first

task aims at finding the articles related to a given article in another subset of
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Figure 3.1. Term Weights for Okapi and LinkLearn

Wikipedia, while the second task is an ad-hoc retrieval task from the TREC

benchmark [Voorhees, 2000]. Compared to Okapi, LinkLearn brings a signifi-

cant improvement in both cases. The results over TREC data [TREC] are of

special interest since they highlight that our learning model can outperform

state-of-the-art term weighting, even when learning and testing are performed
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over very different datasets (Wikipedia articles vs. newswire data).

Besides this transfer learning aspect, LinkLearn also opens several possibil-

ities regarding the learning of term weighting functions. With a data-driven

strategy, it is possible to consider functions that depend on more features than

handcrafted approaches. For instance, one can exploit the document structure,

using as separate features the number of occurrences in the title, in the section

headings, etc. Moreover, one could consider modeling term correlation by com-

puting features from term co-occurrence statistics or from bi-gram statistics.

The next chapter is dedicated to a different IR problem, the retrieval of

images from text queries. The proposed approach builds upon the online op-

timization strategy of LinkLearn, and proposes an efficient learning procedure

to this ranking problem.

3.5 Contributions

The LinkLearn model has been presented at an IR conference [Grangier and

Bengio, 2005a] and at a machine learning workshop on learning to rank [Grangier

and Bengio, 2005b].

� D. Grangier and S. Bengio. Inferring document similarity from hyperlinks. In ACM

Conference on Information and Knowledge Management (CIKM), pages 359–360, Bremen,

Germany, November 2005a.

� D. Grangier and S. Bengio. Exploiting hyperlinks to learn a retrieval model. In NIPS

Workshop on Learning to Rank, pages 12–17, Whistler, Canada, December 2005b.



4 Retrieving Images from Text Queries

In this chapter, we address the problem of retrieving pictures from text

queries. In this task, the retrieval system is given a set of pictures and a few

word query, it then outputs a picture ranking in which the pictures relevant to

the query should appear above the others. This type of setup is common in

several application domains, including web search engines, news wire services

or stock photography providers. So far, the most widely-used approach to this

problem consists in applying text retrieval techniques over a set of manually-

produced captions that describe each picture. Although effective, this solution

is expensive, as it requires a significant manual labeling effort.

Consequently, several automatic annotation approaches have been proposed

in the literature. These approaches rely on a set of captioned pictures to

learn a model, which can then predict textual annotations for any unlabeled

picture. Two main types of auto-annotation models have been introduced:

concept classification models and bi-modal generative models. In the case of

concept classification, a classifier is learned for each vocabulary term, or con-

cept, t. This classifier takes as input a picture and outputs a confidence value

indicating whether the term t should occur in the predicted picture caption.

This classification problem is typically addressed using Support Vector Machine

(SVM) [Naphade, 2004; Vogel and Schiele, 2004] or boosting classifiers [Tieu

and Viola, 2004], as these large margin approaches enjoy good generalization

properties [Vapnik, 1995]. In the case of bi-modal generative models, the train-

ing procedure learns a distribution estimating the joint probability P (p, c) of

a picture p (i.e. a set of visual features) and a caption c (i.e. a set of terms

describing the picture). Given a test picture p, the learned distribution can

then be used to infer the most likely caption, or a distribution over the whole

vocabulary. Compared to concept classification, this generative approach hence
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learns a single model for all vocabulary terms, which notably yields a better

modeling of term dependencies. Several bi-modal generative models have been

proposed in the recent years [Jeon et al., 2003; Barnard et al., 2003; Monay and

Gatica-Perez, 2004], each model relying on different conditional independence

assumptions between the observation of the text and the visual features.

Besides their differences, both concept classification and bi-modal genera-

tive models address the image retrieval problem through an intermediate task,

auto-annotation. Image retrieval is performed by applying text retrieval tech-

niques over the textual outputs of the auto-annotation model. Therefore, their

learning procedure does not maximize a criterion related to the final retrieval

performance, instead it maximizes a criterion related to the annotation per-

formance. In this chapter, we adopt an alternative approach and introduce

a model to learn an image retrieval model directly, without relying on auto-

annotation. Our approach builds upon recent work on discriminative learning

for text retrieval, such as Ranking SVM [Joachims, 2002], RankNet [Burges

et al., 2005] and LinkLean, described in Chapter 3. The proposed model,

Passive-Aggressive Model for Image Retrieval (PAMIR), adopts a learning cri-

terion related to the final retrieval performance. Its learning procedure takes

as input a set of training queries, as well as a set of pictures, and outputs a

trained model likely to achieve high ranking performance on new data. More-

over, PAMIR also enjoys an efficient learning algorithm derived from recent

advances in online learning of kernel-based classifiers [Crammer et al., 2006].

The advantages of the proposed approach are several: our model parameter-

ization can benefit from effective kernels for pictures comparison, while its

optimization procedure permits an efficient learning over large training sets.

Furthermore, our ranking criterion yields a discriminative retrieval model that

does not rely on an intermediate annotation task, which is theoretically ap-

pealing [Vapnik, 1995]. These advantages are actually supported by our ex-

periments, in which PAMIR is shown to outperform various state-of-the-art

alternatives. For instance, the precision at top 10 of PAMIR reaches 10% over

the Corel dataset [Duygulu et al., 2002], which should be compared to 9.3%

for SVM for concept classification, the best alternative (see Section 4.4).

The remainder of this chapter is organized as follows. Section 4.1 briefly de-

scribes previous related research. Section 4.2 introduces the proposed approach.

Section 4.3 presents the features used for image and query representation. This

section also describes different picture kernels from which PAMIR could bene-

fit. Section 4.4 reports the experiments comparing PAMIR to the alternative

approaches. Finally, Section 4.5 draws some conclusions.
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4.1 Related Work

With the advent of the digital photography era, image retrieval has in-

creasingly received attention. This study focuses on an important part of this

research domain, the query-by-text task. This task aims at identifying the pic-

tures relevant to a few word query, within a large picture collection. Solving

such a problem is of particular interest from a user perspective since most

people are used to efficiently access large textual corpora through text query-

ing and would like to benefit from a similar interface to search collections of

pictures. In this section, we briefly describe prior work focusing on this task.

So far, the query-by-text problem has mainly been addressed through au-

tomatic annotation approaches. In this case, the objective is to learn a model

that can predict textual annotations from a picture. Such a model permits the

retrieval of unlabeled pictures through the application of text retrieval tech-

niques over the auto-annotator outputs. In the following, we briefly describe

the two main types of approaches adopted in this context, concept classification

and bi-modal generative models.

4.1.1 Concept Classification

Concept classification formulates auto-annotation within a classification frame-

work. Each vocabulary term t, also referred as a concept, defines a binary clas-

sification problem, whose positive examples are the pictures for which the term

t should appear in the predicted annotation. In this case, the learning proce-

dure hence consists in training a binary classifier for each vocabulary term, and

each classifier is learned to minimize the error rate of its concept classification

problem.

Efforts in concept classification started with the detection of simple concepts

such as indoor/outdoor [Szummer and Picard, 1998], or landscape/cityscape [Vailaya

et al., 1998]. Then, significant research has been directed towards detecting

more challenging concepts, notably in the context of the TREC video bench-

mark [Smeaton et al., 2006]. Large sets of various concepts have then been ad-

dressed in recent work, such as [Carneiro and Vasconcelos, 2005; Chang et al.,

2006]. Nowadays, popular approaches in concept classification mainly relies on

large margin classifiers, such as Support Vector Machines (SVM) [Amir et al.,

2005; Naphade, 2004; Vogel and Schiele, 2004] or boosting approaches [Tieu and

Viola, 2004]. SVM for concept classification constitutes the state-of-the-art for

single word queries. In this application scenario, the images of the test corpus

are ranked according to the confidence scores outputted by the classifier corre-
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sponding to the query term [Naphade, 2004; Vogel and Schiele, 2004]. However,

in the case of multiple word queries, concept classifiers are more difficult to ap-

ply since the independent training of each concept classifier requires to further

define fusion rules to combine the scores of the different concept classifiers [Amir

et al., 2005; Chang et al., 2006]. [Amir et al., 2005] compares different fusion

strategies and concludes that, for query-by-text tasks, it is generally effective

to compute the average of the score of the concept classifiers corresponding to

the query terms, after having normalized their mean and variance. Therefore,

we will adopt this fusion procedure latter in our experiments. As an alternative

to such ad-hoc fusion strategies, bi-modal generative approaches have been in-

troduced to learn a single model over the whole vocabulary, yielding a solution

which can natively handle multiple-word queries.

4.1.2 Bi-Modal Generative Models

Contrary to concept classification, bi-modal generative approaches do not con-

sider the different vocabulary words in isolation. Instead, these approaches

model the joint distribution P (c, p) of the textual caption (c) and the pic-

ture visual features (p), P (c, p). The parameters of such a distribution are

typically learned through maximum likelihood training, relying on a set of

picture/caption pairs. After this learning phase, the retrieval of unlabeled pic-

tures can be performed by ranking the pictures according to their likelihood

P (p|q) given query q, which is derived from the joint P (q, p) through Bayes

rule. Alternatively, it is also possible to estimate a conditional multinomial

over the vocabulary {P (t|p),∀t ∈ V }, for each unlabeled picture. This enables

to retrieve pictures through the application of text retrieval techniques over the

inferred multinomials. In this case, each multinomial P (·|p) is considered to

represent a textual item, in which the number of occurrences of term t is pro-

portional to P (t|p). This alternative retrieval technique is generally preferred

since it is more efficient (the multinomials need to be inferred only once for all

queries) and it has shown to be more effective [Monay and Gatica-Perez, 2004].

Several approaches based on the bi-modal generative framework have been

proposed in the recent years. These models mainly differ in the types of distri-

butions chosen to model textual and visual features, as well as in the way they

model the dependencies between both modalities. In the following, we have

chosen to briefly describe three such models, Cross-Media Relevance Model

(CMRM) [Jeon et al., 2003], Cross-Media Translation Table (CMTT) [Pan

et al., 2004] and Probabilistic Latent Semantic Analysis (PLSA) [Monay and

Gatica-Perez, 2004]. A longer survey could also have described alternative mod-
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els such as Multimodal Hierarchical Aspect Model [Barnard and Forsyth, 2001;

Barnard et al., 2003], Multiple Bernoulli Relevance Model [Feng and R. Man-

matha, 2004] or Latent Dirichlet Allocation [Blei et al., 2003]. However, we

decided to focus on models that have shown to be the most effective over the

Corel dataset [Duygulu et al., 2002].

Cross Media Relevance Model (CMRM) [Jeon et al., 2003], is inspired

by Cross-Lingual Relevance Model [Lavrenko et al., 2002], considering caption

of an image as the translation of its visual properties into words. In this model,

it is assumed that the visual properties of an image are summarized as a set

of discrete visual features. Formally, the visual features of a picture p are

represented as a vector,

p = (vtf1,p, . . . , vtfV,p),

where vtfi,p refers to the number of features of type i in picture p and V is the

total number of visual feature types.

Given such a representation, CMRM infers a multinomial P (t|ptest) over the

vocabulary for any test picture ptest. For that purpose, the joint probability of

term t and all the visual elements of ptest is estimated by its expectation over

the training pictures in Ptrain,

P (t, ptest) =
|Ptrain|∑

j=1

P (j) · P (t, ptest|j).

It is then assumed that terms and visual elements are independent given a

training picture, leading to

P (t, ptest) =
|Ptrain|∑

j=1

P (j) · P (t|j)
V∏

v=1

P (v|j)vtfv,ptest . (4.1)

In this equation, the probability of a training picture P (j) is assumed to be uni-

form over the training set, i.e. P (j) = 1/|Ptrain|, while the probability of a term

given a training picture P (t|j) and the probability of a visual element given a

training pictures P (v|j) are estimated through maximum likelihood, smoothed

with the Jelinek-Mercer method [Jeon et al., 2003]. From (4.1), P (t|ptest)

can then be estimated through Bayes rule, P (t|ptest) = P (t, ptest)/P (ptest).

Although simple, this approach has shown to be more effective compared to

other approaches inspired by translation models, e.g. [Duygulu et al., 2002].

Cross Media Translation Table (CMTT) also builds upon cross-lingual

retrieval techniques [Pan et al., 2004]. This model considers textual terms and

discrete visual features, or visterms, as words originating from two different
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languages and constructs a translation table containing P (t|v) for any pair of

term/visterm (t, v). This table allows for the estimation of P (t|ptest) for any

term t and any picture ptest:

P (t|ptest) =
m∑

i=1

P (t|vi)P (vi|ptest),

where P (vi|ptest) =
vtfi,ptestPm

i=1 vtfi,ptest
, and v1, . . . , vm are the visterms of ptest.

The translation table {P (t|v),∀t, v} is built from the training data Dtrain

according to the following process. First, each term i (and each visterm j)

is represented by a |Dtrain| dimensional vector, ti (vj), in which each compo-

nent k is the weight of term i (visterm j) in the kth training example. As

a noise removal step, the matrix M = [t1, . . . , tT , v1, . . . , vV ] containing all

term and visterm vectors is approximated with a lower rank matrix, M ′ =

[t′1, . . . , t
′
T , v′1, . . . , v

′
V ], through Singular Value Decomposition, and P (j|i) is

finally defined as

P (j|i) =
cos(t′i, v

′
j)∑|V |

k=1 cos(t′i, v
′
k)

.

Like CMRM, this method has also been evaluated over the Corel corpus [Pan

et al., 2004], where it has shown to be effective. The use of Singular Value De-

composition has notably shown to improve noise robustness. However, CMTT

has also some limitations. In particular, cosine similarity can only model simple

relationships between terms and visual features. Approaches modeling more

complex relationships, such as Probabilistic Latent Semantic Analysis [Monay

and Gatica-Perez, 2004], have subsequently been introduced.

Probabilistic Latent Semantic Analysis (PLSA) has first been intro-

duced for text retrieval [Hofmann, 2001], as explained in Chapter 2. It has

then been modified for image retrieval [Monay and Gatica-Perez, 2004]. This

model introduces the following conditional independence assumption: “terms

and discrete visual features are independent from pictures conditionally to an

unobserved discrete variable, the aspect variable zk ∈ {z1, . . . , zK}”. In this

framework, the probability of observing a term t or a visual feature v in a

picture p follows

P (p, t) = P (p) ·
∑

k

P (zk|p)P (t|zk), (4.2)

P (p, v) = P (p) ·
∑

k

P (zk|p)P (v|zk). (4.3)

The different parameters of the model can be estimated relying on a two-step

process. First, the probabilities P (p), P (zk|p) and P (t|zk) for all p ∈ Ptrain
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are estimated to maximize the likelihood of the training captions through the

Expectation Maximization algorithm. Then the probabilities P (v|zk),∀v, k are

fitted to maximize the likelihood of the training pictures, keeping P (p) and

P (zk|p) fixed. For a test picture without caption, the probabilities P (p), P (zk|p)

are estimated to maximize the likelihood of the test picture, keeping P (v|zk),∀(v, k)

to the values estimated during training. After this procedure, (4.2) is applied

to infer P (p, t) for any test picture p and any term t. Similarly to CMRM,

Bayes rule can then derive P (t|p) from P (p, t).

PLSA has several strengths: the latent aspect assumption allows one to

model more complex dependencies between term and visual features, compared

to CMRM or CMTT. Moreover, the two step training procedure biases the

latent space toward the text modality, yielding better performance than less

constrained latent models [Monay and Gatica-Perez, 2004].

In absence of manual annotations, bi-modal generative models constitute

the state-of-the-art for the retrieval of images from multiple-word queries, while,

as mentioned above, concept classification is generally preferred for single word

queries. However, one could wonder whether it is possible to provide a single

solution for both settings. More fundamentally, one can also question the auto-

annotation framework on which both types of approaches are based. In both

cases, model training aims at solving an auto-annotation problem: for concept

classification, the learning objective is to minimize the number of false posi-

tives (predicting a word which does not occur in the reference annotation) and

false negatives (not predicting a word occurring in the reference annotation),

while, for bi-modal generative models, the learning objective is to maximize

the likelihood of the training picture/caption pairs. None of these criteria is

tightly related to the final retrieval performance and there is hence no guarantee

that a model optimizing such annotation objectives also yields good retrieval

rankings.

In order to address those issues, we propose a discriminative ranking model

for the query-by-text problem. The proposed approach is based on recent work

on discriminative learning for the retrieval of text documents, such as [Burges

et al., 2005; Joachims, 2002] or our own work presented in previous chapter. It

learns a retrieval model with a criterion related to the ranking performance over

a set of training queries. To the best of our knowledge, this is the first attempt

to address the query-by-text problem directly, without solving an intermediate

annotation problem.
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4.2 Passive-Aggressive Model for Image Retrieval

This section introduces our discriminative model for the retrieval of images

from text queries, Passive-Aggressive Model for Image Retrieval (PAMIR). It

first formalizes the query-by-text problem before introducing PAMIR parame-

terization and learning objective. Finally, it explains how the proposed linear

model can be applied to infer non-linear decision functions relying on kernels.

4.2.1 Formalizing the Query-by-Text Problem

In the query-by-text problem, the retrieval system receives a text query q, from

the text space T , and a set of pictures P , from the picture space P. It should

then output a picture ranking in which the pictures relevant to q would ideally

appear above the others, i.e.

∀p+ ∈ R(q, P ),∀p− ∈ R(q, P ), rk(q, p+) < rk(q, p−) (4.4)

where R(q, P ) refers to the set of pictures of P that are relevant to q, R(q, P )

refers to the set of pictures of P that are not relevant to q and rk(q, p) refers

to the position of picture p in the ranking outputted for query q. Our goal is

hence to learn a ranking model from training pictures Ptrain and queries Qtrain

such that the constraints of type (4.4) are likely to be verified over new pictures

Ptest and queries Qtest.

Based on the framework introduced in Chapter 2, we address this ranking

problem with a ranking function f . This function f : T × P → R assigns a

real value f(q, p) expressing the match between any query q and any picture

p. Given a query q, f computes the picture scores {f(q, p),∀p ∈ P} and the

pictures are ordered by decreasing scores. Hence, (4.4) translates to

∀p+ ∈ R(q, P ),∀p− ∈ R(q, P ), f(q, p+) > f(q, p−), (4.5)

and our learning task aims at identifying a function f likely to verify (4.5)

for unseen pictures Ptest and queries Qtest. For that purpose, we introduce a

parametric function fw along with an algorithm to infer the parameter w from

(Ptrain, Qtrain), so that fw is likely to achieve this objective.

4.2.2 Model Parameterization

The parameterization of fw is inspired from text retrieval (see Chapter 2),

fw : T × P → R, where fw(q, p) = q · gw(p),
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gw refers to a parametric mapping from the picture space P to the text space

T , and · refers to the dot product in the text space, which is commonly applied

to measure the matching between textual vectors, as explained in the previous

chapters. In other words, our scoring function fw measures the match between

a picture p and a query q by first projecting the picture into the text space ac-

cording to gw, before measuring the dot-product between the obtained textual

vector gw(p) and the query q.

In the following, the form of gw is first limited to linear mappings,

gw : P → T , where gw(p) = (w1 · p, . . . , wT · p) (4.6)

and w = (w1, . . . , wT ) is a vector of PT , T being the dimension of the text space

T . Section 4.2.5 then shows that the training procedure proposed thereafter

can be extended to non-linear mappings through the kernel trick [Shawe-Taylor

and Cristianini, 2000].

4.2.3 Large Margin Learning for our Ranking Problem

Our goal is to learn the parameter w such that fw yields high ranking per-

formance over unseen test queries. For that purpose, we first introduce a geo-

metric interpretation of fw, from which we can derive a margin maximization

objective suitable to our ranking task.

For any query q = (q1, . . . , qT ) ∈ T and picture p ∈ P, we define γ(q, p) as

the vector (q1p, . . . , qT p) of PT and rewrite fw(q, p) as w · γ(q, p), since

fw(q, p) = q · gw(p) = q · (w1 · p, . . . , wT · p)

=
T∑

t=1

wt · (qtp) = w · γ(q, p).

Hence, we can interpret fw(q, p) as the projection of γ(q, p) onto the vector

w. This means that PAMIR ranks the pictures of P according to the order of

the projections of {γ(q, p),∀p ∈ P} along the direction of w, see Figure 4.1.

With such an interpretation, one can easily notice that only the direction of w

determines whether the constraints of type (4.5), ∀q ∈ T , ∀p+ ∈ R(q, P ),

∀p− ∈ R(q, P ), w · γ(q, p+)−w · γ(q, p−) > 0,

are verified since the norm of w has no influence on the sign of w · γ(q, p+)−
w · γ(q, p−).

Hence, we can arbitrarily constrain the weight vector to lie on the unit circle

U , and solve our learning problem by finding a vector u ∈ U that verifies all
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w

γ(q, p2)

1st

γ(q, p1)

3rd

γ(q, p3)

2nd

Figure 4.1. PAMIR ranking strategy: in this example, the pictures of

{p1, p2, p3} are ranked p2, p3, p1 in answer to the query q. This figure illus-

trates that the pictures are ranked according to the order of the projections of

{γ(q, p1), γ(q, p2), γ(q, p3)} along the direction of w.

training constraints. In other words, we want to select the weight vector in the

set

S = {u ∈ U s.t. ∀(q, p+, p−) ∈ Dtrain, u · γ(q, p+)− u · γ(q, p−) > 0}

where Dtrain refers to all triplets (q, p+, p−) such that q ∈ Qtrain, p+ ∈
R(q, Ptrain), p− ∈ R(q, Ptrain).

When the training constraints are feasible (S 6= ∅), any weight vector of

S yields perfect retrieval performance over the training set. However, not all

these solutions will yield the same results over some new test data. In order to

select a vector of S likely to yield high generalization performance, we introduce

the notion of margin for our ranking problem. For any vector u ∈ S, we define

its margin as

m(u) = min
(q,p+,p−)∈Dtrain

u · γ(q, p+)− u · γ(q, p−),

which is, by definition of S, a positive quantity. This notion of margin is

inspired from the definition introduced in [Herbrich et al., 2000] in the context

of ranked categorization.
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Equipped with this definition, we now explain why large margin solutions

are preferable to ensure good generalization performance. Given a test triplet

(qtest, p
+
test, p

−
test) composed of a query qtest, a picture p+

test relevant to qtest

and a picture p−test non-relevant to qtest, we define R(qtest, p
+
test, p

−
test) as the

smallest quantity that satisfies

∃(qtrain, p+
train, p−train) ∈ Dtrain

s.t.

{
‖γ(qtrain, p+

train)− γ(qtest, p
+
test)‖ < R(qtest, p

+
test, p

−
test)

‖γ(qtrain, p−train)− γ(qtest, p
−
test)‖ < R(qtest, p

+
test, p

−
test).

This definition implies that,

∀u ∈ S,

{
|u · γ(qtrain, p+

train)− u · γ(qtest, p
+
test)| < R(qtest, p

+
test, p

−
test)

|u · γ(qtrain, p−train)− u · γ(qtest, p
−
test)| < R(qtest, p

+
test, p

−
test)

since ‖u‖ = 1. Therefore,

u · γ(qtest, p
+
test)− u · γ(qtest, p

−
test)

= (u · γ(qtest, p
+
test)− u · γ(qtrain, p+

train))

− (u · γ(qtest, p
−
test)− u · γ(qtrain, p−train))

+ (u · γ(qtrain, p+
train)− u · γ(qtrain, p−train))

can be bounded as,

u · γ(q, p+
test)− u · γ(q, p−test) > −2R(qtest, p

+
test, p

−
test) + m(u)

since u · γ(q, p+
train) − u · γ(q, p−train) > m(u) by definition of m(u). Con-

sequently, any solution u ∈ S for which the margin m(u) is greater than

2R(qtest, p
+
test, p

−
test) satisfies the test constraint u ·γ(q, p+

test)−u ·γ(q, p−test) > 0.

Therefore, we decide to focus on the selection of the weight vector of S with

the largest margin, as this weight is the most likely to satisfy all the constraints

of a given test set,

u∗ = argmaxu∈S m(u).

This maximization problem is actually equivalent to the following minimization

problem,

min
u∈PT

1
m(u)2

s.t.

{
‖u‖ = 1

∀(q, p+, p−) ∈ Dtrain, u · γ(q, p+)− u · γ(q, p−) > m(u),

and the introduction of the vector w = 1
m(u)u yields the following formulation

of the same problem,

min
w∈PT

‖w‖2, s.t. ∀(q, p+, p−) ∈ Dtrain,w · γ(q, p+)−w · γ(q, p−) > 1.
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This formulation of our retrieval problem is similar to the Ranking Support

Vector Machine (RSVM) problem [Joachims, 2002] introduced in the context

of text retrieval, even if the notion of margin was not formalized as such in the

case of RSVM.

Like for RSVM, we need to relax the training constraints for the non-feasible

case (S = ∅), which yields the following optimization problem,

min
w∈PT

‖w‖2 + C
∑

(q,p+,p−)∈Dtrain

ξq,p+,p−

s.t. ∀(q, p+, p−) ∈ Dtrain,

{
w · γ(q, p+)− w · γ(q, p−) > 1− ξq,p+,p−

ξq,p+,p− ≥ 0,

(4.7)

where the hyperparameter C controls the trade-off between maximizing the

margin and satisfying all the training constraints. This problem (4.7) can

equivalently be written as,

min
w∈PT

‖w‖2 + C L(w; Dtrain),

where

L(w; Dtrain) =
∑

(q,p+,p−)∈Dtrain

l(w; q, p+, p−) (4.8)

and, ∀(q, p+, p−) ∈ Dtrain,

l(w; q, p+, p−) = max(0, 1−w · γ(q, p+) + w · γ(q, p−)),

see [Collobert and Bengio, 2004].

4.2.4 An Efficient Learning Algorithm

The resolution of problem (4.7) involves a costly optimization procedure, if the

RSVM approach is adopted. In fact, state-of-the-art techniques to solve this

problem have a time-complexity greater than O(|Dtrain|2) [Joachims, 1998],

where |Dtrain| denotes the number of training constraints. As we would like

to handle large constraint sets, we derive an efficient training procedure by

adapting the Passive-Aggressive (PA) algorithm, originally introduced for clas-

sification and regression problems [Crammer et al., 2006]. For our ranking

problem, PA should minimize L(w; Dtrain) while keeping ||w||2 small.

For that purpose, the algorithm constructs a sequence of weight vectors

(w0, . . . ,wn) according to the following iterative procedure: the first vector

is set to be zero, w0 = 0 and, at the ith iteration, the weight wi is selected

according to the ith training example (qi, pi+, pi−) and the previous weight

wi−1,

wi = argminw

1
2
‖w −wi−1‖2 + c l(w; (qi, pi+, pi−)). (4.9)
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Hence, at each iteration, we select the weight wi as a trade-off between mini-

mizing the loss on the current example l(w; (qi, pi+, pi−)) and remaining close

to the previous weight vector wi−1. The aggressiveness parameter c controls

this trade-off. Based on [Crammer et al., 2006], it can be shown that the

solution of (4.9) is

wi = wi−1 + τiv
i,

where τi = min
{

c,
l(wi−1; (qi, pi+, pi−))

‖vi‖2

}
and vi = γ(qi, pi+)− γ(qi, pi−). (4.10)

The hyperparameter c is selected to maximize the performance over some val-

idation data Dvalid. The number of iterations n is also validated: training

is stopped as soon as the validation performance stops improving. This early

stopping procedure actually allows one to select a good trade-off between sat-

isfying all training constraints (i.e. minimizing the training loss L(w; Dtrain))

and maximizing the margin (i.e. minimizing ‖w‖2). During the training pro-

cess, it can be shown that, while the training error is decreasing [Crammer et al.,

2006], ‖w‖2 tends to increase, see Appendix A.1. Hence, the number of itera-

tions n plays a role similar to C in RSVM (4.7), setting the trade-off between

margin maximization and training error minimization. The introduced PA al-

gorithm therefore solves our learning problem with a time-complexity growing

linearly with the number of iterations n. The observed complexity, reported

later in Section 4.4, actually shows that n grows much slower than |Dtrain|2,

a lower bound on RSVM time-complexity, enabling PAMIR to address much

larger constraint sets.

4.2.5 Non-Linear Extension

Our model parameterization is based on a linear mapping gw from the picture

space P to the text space T , see Eq. (4.6). This parameterization can be ex-

tended to non-linear mappings through the kernel trick, which allows PAMIR

to benefit from effective picture kernels recently introduced in the computer

vision literature, e.g. [Wallraven and Caputo, 2003; Kondor and Jebara, 2003;

Lyu, 2005]. To kernelize PAMIR, we show that its parameterization solely

requires the evaluation of dot products between picture vectors. For that pur-

pose, we prove that, in the weight vector w = (w1, . . . , wT ), each subvector

wt, ∀t, is a linear combination of training pictures. This then implies that the

evaluation of

gw(p) = (w1 · p, . . . , wT · p), ∀p ∈ P,
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only requires to compute the dot product between p and any training picture.

The proof that, for all t, the vector wt is a linear combination of training

pictures is performed by induction over the iterations of our training procedure:

at the first iteration, the property is obviously verified since w0
t = 0, then the

update preserves the property since, wi
t = wi−1

t +τiv
i
t, where vi

t is itself a linear

combination of training pictures, vi
t = qi

t (pi+ − pi−), see Eq. (4.10). Hence,

at the last iteration n, wt = wn
t verifies the property. This means that we can

rewrite wt as wt =
∑|Ptrain|

j=1 αt,jpj , where ∀j, αt,j ∈ R. Consequently, we can

introduce any kernel function k : P × P → R, and rewrite gw as,

∀p ∈ P, [gw(p)]t =
|Ptrain|∑

j=1

αt,jk(pj , p),

where [gw(p)]t denotes the tth component of the gw(p) vector. Practically,

in this kernelized case, each wt is stored as a support set, consisting of pairs

(αt,j , pj). The following section notably discusses different types of kernels

suitable for our task.

This section has introduced PAMIR, a model suitable for image retrieval

from text queries. This model has several advantages compared to the previ-

ous approaches presented in Section 4.1: unlike SVM for concept classification,

PAMIR can natively handle multiple-word queries, without requiring any fusion

strategy; unlike bi-modal generative models, it relies on margin maximization

training and hence enjoys good generalization properties [Vapnik, 1995]. More

importantly, unlike both SVM for concept classification and bi-modal genera-

tive models, PAMIR training relies on a ranking criterion related to the final

retrieval performance of the model. This criterion yields a discriminative re-

trieval model, which does not learn from textual annotations, but directly from

training queries with pictures assessed for relevance.

4.3 Text and Visual Features

This section introduces both the representation of text queries, and the rep-

resentation of pictures, along with kernel functions suitable for picture com-

parison.

4.3.1 Query Representation

The bag-of-words framework is borrowed from text retrieval for query repre-

sentation. As in previous chapters, the vocabulary is given prior to training to

define the set of allowed words. Then, each query is assigned a vector q ∈ RT ,



Text and Visual Features 53

where T denotes the vocabulary size. The ith component of this vector, cor-

responding to the weight of term i in query q, is defined according to the

normalized idf weighting scheme [Baeza-Yates and Ribeiro-Neto, 1999],

qi =
bi,q idfi√∑T

j=1(bj,q idfj)2

where bi,q is a binary weight, denoting the presence (bi,q = 1) or absence (bi,q =

0) of i in q, and idfi is the inverse document frequency of i. This latter quantity

is defined based on a reference corpus, such as an encyclopedia, and corresponds

to idfi = − log(ri), where ri refers to fraction of corpus documents containing

term i. This weighting hypothesizes that, among the terms present in q, the

terms appearing rarely in the reference corpus are more discriminant and should

be assigned higher weights (see previous chapters for a more complete discussion

on term weighting).

4.3.2 Picture Representation

The representation of pictures for image retrieval is a research topic in itself,

and different approaches have been proposed in the recent years, e.g. [Feng and

R. Manmatha, 2004; Takala et al., 2005; Tieu and Viola, 2004]. Contrary to

the well-established bag-of-words representation for text data, there is not yet

a single image representation that would be adequate for a wide variety of re-

trieval problems. However, among the proposed representations, a consensus is

emerging on using local descriptors for various tasks, e.g. [Lowe, 2004; Quelhas

et al., 2005]. This type of representation segments the picture into regions of

interest, and extracts visual features from each region. The segmentation algo-

rithm as well as the region features vary among approaches, but, in all cases,

the image is then represented as a set of feature vectors describing the regions

of interest. Such a set is often called a bag-of-local-descriptors.

This study also adopts the local descriptor framework. Our features are

extracted by dividing each picture into overlapping square blocks, and each

block is then described with edge and color histograms. For edge histograms,

we rely on uniform Local Binary Patterns [Ojala et al., 2002]. These texture

descriptors have shown to be effective on various tasks in the computer vision

literature [Ojala et al., 2002; Takala et al., 2005], certainly due to their robust-

ness with respect to changes in illumination and other photometric transforma-

tions [Ojala et al., 2002]. Local Binary Patterns assign the texture histogram

of a block by considering differences in intensity at circular neighborhoods cen-

tered on each pixel. Precisely, we use LBP8,2 patterns, which means that a
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Figure 4.2. An example of Local Binary Pattern (LBP8,2). For a given pixel,

the Local Binary Pattern is a 8-bit code obtained by verifying whether the

intensity of the pixel is greater or lower than its 8 neighbors.

circle of radius 2 is considered centered on each block. For each circle, the

intensity of the center pixel is compared to the interpolated intensities located

at 8 equally-spaced locations on the circle, as shown on Figure 4.2, left. These

eight binary tests (lower or greater intensity) result in an 8-bit sequence, see

Figure 4.2, right. Hence, each block pixel is mapped to a sequence among

28 = 256 possible sequences and each block can therefore be represented as

a 256-bin histogram. In fact, it has been observed that the bins correspond-

ing to non-uniform sequences (sequences with more than 2 transitions 1 → 0

or 0 → 1) can be merged, yielding more compact 59-bin histograms without

performance loss [Ojala et al., 2002].

Color histograms are obtained by k-means clustering. The color codebook

is learned from the Red-Green-Blue pixels of the training pictures, and the

histogram of a block is obtained by mapping each block pixel to the closest

codebook color.

Finally, the histograms describing color and edge statistics of each block

are concatenated, which yields a single vector descriptor per block. Our local

descriptor representation is therefore simple, relying on both a basic segmenta-

tion approach and simple features. Of course, alternative representations could

have been used, e.g. [Feng and R. Manmatha, 2004; Grangier et al., 2006a;

Tieu and Viola, 2004]. However, this work focuses on the learning model, and

a benchmark of picture representations is beyond the topic of this research.

4.3.3 Picture Kernels

Our model relies on a kernel function k : P ×P → R over the picture space P,

as explained in Section 4.2. Given our picture representation, we hence need a

kernel to compare bags of local descriptors. Fortunately, several kernels com-

paring sets of feature vectors have been proposed along with the development
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of local descriptors [Wallraven and Caputo, 2003; Kondor and Jebara, 2003;

Lyu, 2005].

Distribution Kernel approaches fit a distribution p(v|p) over the space

of local descriptors for each picture p, and then apply a kernel between distri-

butions to compare pictures. Such kernels includes the Bhattacharya kernel or

the expected likelihood kernel [Jebara and Kondor, 2003].

In this study, we fit a Gaussian Mixture Model for each picture p through

Expectation-Maximization, as proposed in [Lyu, 2005]. Motivated by scalabil-

ity issues, we fit standard Gaussians on the input space, not kernelized Gaussian

mixtures like [Lyu, 2005]. The learned distributions are then compared with

the Expected Likelihood Kernel (ELK),

kELK(p, p′) =
∫

v

p(v|p) p(v|p′)dv,

which can be computed in closed form for Gaussian mixtures [Jebara and Kon-

dor, 2003; Lyu, 2005].

Matching Kernel approaches [Wallraven and Caputo, 2003] rely on a

minor kernel, kl, that compares local descriptors. The kernel between two sets

of local descriptors, p = {dp,i}|p|i=1 and p′ = {dp′,i}|p
′|

i=1, is defined as the average

of the best-match-score between the descriptors of p and p′,

kmatch(p, p′) =
1
2

[
k̂(p, p′) + k̂(p′, p)

]
,

where k̂(p, p′) =
1
|p|

|p|∑
i=1

max
j

kl(dp,i, dp′,j).

Formally, this function kmatch is not a true Mercer kernel, since its Gram matrix

is not always positive definite [Boughorbel et al., 2004]. However, in practice,

it can be used with SVM or PAMIR, without enjoying the same theoretical

guarantee as a true kernel [Boughorbel et al., 2004]. Empirically, SVMs relying

on this kernel have shown to be effective over several object categorization

tasks [Boughorbel et al., 2004; Eichhorn and Chapelle, 2004; Wallraven and

Caputo, 2003].

Visterm Kernel approaches explicitly represent the pictures in a high

dimensional vector space, where the linear kernel is applied. For that purpose,

each local descriptor of a picture p is represented as a discrete index, called

visual term or visterm, and, like for text data, the picture is represented as a

bag-of-visterms vector, in which each component pi is related to the presence

or absence of visterm i in p.

The mapping of the descriptors to discrete indexes is performed according

to a codebook C, which is typically learned from the local descriptors of the
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training pictures through the k-means algorithm [Duygulu et al., 2002; Jeon and

Manmatha, 2004; Quelhas et al., 2005]. This study also applies this standard

strategy. The assignment of the weight pi of visterm i in picture p is classical

as well,

pi =
vtfi,p vidfi√∑|C|
j=1(vtfi vidfi)2

,

where vtfi, the term frequency of i in p, refers to the number of occurrences of

i in p, while vidfi, the inverse document frequency of i, is defined as −log(rv
i ),

rv
i being the fraction of training pictures containing at least one occurrence of

i.

Each of the presented kernels proposes a different technique to compare

bags of local descriptors, whose effectiveness highly depends on the applica-

tion context. For our task, we selected the most appropriate kernel through

validation, as explained in the next section.

4.4 Experiments and Results

In this section, we present the experiments performed to evaluate PAMIR.

We first describe our experimental setup, and then discuss the various issues

related to hyperparameter selection, including the choice of a suitable kernel.

Finally, we report the experimental results comparing PAMIR to the alternative

models presented in Section 4.1.

4.4.1 Experimental Setup

The datasets used for evaluation originate from stock photography, one of the

application context of query-by-text image retrieval. Data from other domains,

such as web search engine or newspaper archive, could also have been used.

However, we decided to focus on stock photography, since the annotations

associated with such pictures are generally produced by professional assessors

with well defined procedures, which guarantees a reliable evaluation.

Two datasets are used in our experiments, CorelSmall and CorelLarge. Both

sets originate from the Corel stock photography collection [Corel], which offers

a large variety of pictures, ranging from wilderness scenes to architectural build-

ing pictures or sport photographs. Each picture is associated with a textual

caption that depicts the main objects present in the picture, see Figure 4.3.

CorelSmall corresponds to the 5, 000-picture set presented in [Duygulu et al.,

2002]. This set, along with the provided split between development and test

data, has been used extensively in the query-by-text literature, e.g. [Barnard
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coast water people market

lighthouse cliff food parasol

Figure 4.3. Examples of Corel pictures along with the associated captions.

et al., 2003; Jeon and Manmatha, 2004; Monay and Gatica-Perez, 2004]. It

is composed of a 4, 500-picture development set P s
dev and a 500-picture test

set P s
test. For model training and hyperparameter selection, we further divided

the development set into a 4, 000-picture train set P s
train and a 500-picture

validation set P s
valid (see Table 4.1).

The queries needed to train and evaluate our model originate from the

caption data. For that purpose, we first defined the relevance assessments con-

sidering that a picture p is relevant to a query q if and only if the caption

of p contains all query words. Then, we defined the query set, Qs
train, Qs

valid,

or Qs
test, as the set containing all the queries for which there is at least one

relevant picture in the picture set, P s
train, P s

valid, or P s
test. This strategy defin-

ing queries and relevance assessments is hence not identical to a labeling in

which a human assessor issues queries and labels pictures. However, it is based

on manually produced captions and the resulting relevance information can

be considered as reliable. In fact, there is no doubt that the pictures marked

as relevant according to the definition above are indeed relevant, e.g. if the

words beach, sky are present in a caption, it can confidently be claimed that

the corresponding picture is relevant to the queries “beach”, “sky” and “beach

sky”. The only problem that could affect our relevance data is due to the pos-

sible incompleteness of some captions. If a word is missing from a caption, the

corresponding picture will wrongly be marked as non-relevant for all queries

containing this word. This weakness is however not specific to our labeling

process. For instance, system pooling, the semi-automatic technique used for

labeling data in retrieval benchmarks, also underestimates the number of rele-

vant documents [Baeza-Yates and Ribeiro-Neto, 1999].

CorelSmall statistics are summarized in Table 4.1. The datasets are used
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as follows: the parameter vector w is learned over (P s
train, Qs

train) through

the training procedure defined in Section 4.2. Hyperparameters, such as the

number of training iterations, or the type of kernel used, are selected over

(P s
valid, Qs

valid). Final evaluation is conducted over (P s
test, Q

s
test). The training

and evaluation of the alternative models is also performed over to the exact

same data split, as it is the only way to conduct a fair comparison between the

models [Mueller et al., 2002].

Table 4.1. CorelSmall Statistics

train valid test

Number of pictures 4,000 500 500

Picture size 384x256 or 256x384

Number of queries 7,221 1,962 2,241

Avg. # of rel. pic. per q. 5.33 2.44 2.37

Vocabulary size 179

Avg. # of words per query 2.78 2.51 2.51

The second dataset, CorelLarge, contains 35, 379 images and hence cor-

responds to a more challenging retrieval problem than CorelSmall. Like for

the smaller set, CorelLarge pictures originate from the Corel collection and

CorelLarge queries have been defined relying on the picture captions as ex-

plained above. The statistics of the training, validation and test sets of CorelLarge

are reported in Table 4.2.

For both datasets, performance evaluation has been conducted relying on

the standard information retrieval measures defined in Chapter 2: average

precision (AvgP), precision at top 10 (P10), and break-even point (BEP). In

the following, we report the performance of PAMIR and the alternative models

as the average of these measures over the sets of test queries Qs
test and Ql

test.

4.4.2 Hyperparameter Selection

This section studies the influence of the hyperparameters on PAMIR perfor-

mance. The feature extractor parameters, the type of kernel used, and the

learning algorithm parameters are selected through validation: the model is

trained with different parameter values over the training set and the parame-

ters achieving the highest average precision over the validation set are selected.

For CorelSmall, all types of parameters are validated. For CorelLarge, only the

learning parameters are validated for efficiency reasons, keeping the feature

extractor and kernel parameters to the value selected over CorelSmall.
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Table 4.2. CorelLarge Statistics

train valid test

Number of pictures 14,861 10,259 10,259

Picture size 384x256 or 256x384

Number of queries 55,442 39,690 39,613

Avg. # of rel. pic. per q. 3.79 3.51 3.52

Vocabulary size 1,892

Avg. # of words per query 2.75 2.72 2.72

Table 4.3. Selecting the block size over (Qs
valid, P s

valid). The other hyperpa-

rameters (kernel and learning parameters) are set to their optimal validation

value.

block size 32 48 64 96 128 192 256

blocks per pic. 345 135 77 28 15 3 2

AvgP (valid.) 26.1 25.3 27.3 25.3 22.3 17.8 18.3

Feature extraction requires to select the block segmentation parameters

(block size and block overlap) and the number of clusters used for color quan-

tization. The block size determines the trade-off between obtaining local in-

formation (with small blocks) and extracting reliable statistics for each block

(with large blocks), this parameter is selected through validation. Block over-

lap is set to half the block size such that all pixels belong to the same number of

blocks, to avoid the predominance of pixels located at the block borders. The

number of color bins is set to 50, as a trade-off between extracting a compact

block representation and obtaining a perceptually good image reconstruction.

Table 4.3 reports the validation performance for different block sizes. These

results show that large blocks (> 128 pixels) are not suitable for our retrieval

problem. In fact, it seems that considering less than 15 local descriptors per

image does not provide PAMIR with enough statistics to address the retrieval

task. The performance is stable for small blocks, between 32 and 96 pixels,

with a slight advantage for 64 pixel blocks. We therefore pick this latter value

for evaluation.

The selection of the kernel is also performed through validation. In fact, the

different kernels comparing bag-of-local descriptors have been proposed recently

and few studies focused on the empirical comparison of these approaches [Eich-



60 Retrieving Images from Text Queries

horn and Chapelle, 2004]. Table 4.4 reports the best validation performance for

each kernel, along with its parameters. Among the three kernels evaluated, the

visterm kernel is clearly yielding the best performance, followed by the match

kernel and then the Expected Likelihood Kernel. These results yields several

remarks.

The Expected Likelihood Kernel (ELK) over Gaussian mixtures surprisingly

yields its best results with only a single Gaussian per picture. This observa-

tion is not in line with the handwritten digit recognition experiments reported

in [Lyu, 2005]. Even if the differences in the datasets and the tasks performed

might explain this difference, we further investigated on this point. In fact, the

non-convex Expectation-Maximization procedure seems to explain the failure

of ELK over Gaussian mixtures. The fitting of a mixture over the same picture

with different initializations yield similar distributions in terms of data like-

lihood. However, these distributions are not equivalent for ELK evaluations

and large relative variations are observed for a given pair of pictures, depend-

ing on the initialization of the Expectation-Maximization procedure for these

pictures. This effect could possibly be reduced through averaging, if one fits

multiple mixtures per picture. However, such a solution would be too costly

for large datasets.

The performance of the match kernel is reported to be higher than the ELK.

The match kernel relies on a minor kernel to compare pairs of local descriptors.

In our experiments, the linear kernel, the Radial Basis Function (RBF) kernel,

and the polynomial kernel have been tried as minor kernels. Table 4.4 reports

results only for the RBF kernel, which yielded the highest validation perfor-

mance. Regarding efficiency, the match kernel is computationally demanding

as it needs to compare all pairs of local descriptors between two pictures.

The visterm kernel is reported to yield the highest validation performance

and optimal performance is reached with a codebook of 10, 000 prototypes.

Moreover, the visterm approach also yields a more efficient model, compared

to the other kernels. In fact, the visterm framework represents the pictures as

bag-of-visterms vectors, where the linear kernel is applied. This means that

the picture vectors can be pre-computed, as soon as the pictures are available.

Then, model training and testing only require the evaluations of the linear

kernel between sparse vectors. Such an operation can be performed efficiently

as its complexity only depends on the number of non-zero components of the

vectors (bounded by 77, the number of blocks per image), not on the data

dimension (10, 000, the codebook size) [Baeza-Yates and Ribeiro-Neto, 1999].

Furthermore, the linear kernel allows for handling w explicitly, which involves
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Table 4.4. Selecting the kernel over (Qs
valid, P s

valid). The other hyperparameters

(feature extractor and learning parameters) are set to their optimal validation

value.

Kernel AvgP Parameters

Exp. Likelihood 23.1 num. of Gaussians per picture (1)

Match 25.6 stdv of the local RBF kernel (5)

Visterm-Linear 27.3 codebook size (10, 000)

Table 4.5. Selecting the parameters of the learning procedure. The other

hyperparameters (feature extractor and kernel parameters) are set to their

optimal CorelSmall validation value.

Dataset Aggressiveness c Num. of iter. n

CorelSmall 0.1 2.53× 106

CorelLarge 0.1 1.55× 107

much less computation than handling support sets.

The training parameters of PAMIR are the number of iterations n and the

aggressiveness c. Both of them sets the trade-off between the two learning ob-

jectives, i.e. minimizing the training loss and identifying a large margin model.

Table 4.5 reports the selected values. For both CorelLarge and CorelSmall,

the number of iterations is significantly lower than the number of training

constraints (e.g. for CorelSmall, 2.53 × 106 iterations should be compared to

1.45 × 108 training constraints). The algorithm hence converges before exam-

ining all the training set, which is certainly due to some redundancy in the

training data. This highlights the efficiency of the PA approach, compared

to other optimization techniques for SVM-like problems, as discussed in Sec-

tion 4.2.

To conduct a fair comparison, the alternative models have been trained

over the same local descriptors and their hyperparameters have been selected

with the same validation procedure. Namely, we selected the block size (for

all models), the visual codebook size (for CMRM, CMTT and PLSA), and

the kernel along with the corresponding parameters (for concept classification

SVM) based solely on the validation set of CorelSmall, while all other param-

eters have been validated for both CorelSmall and CorelLarge, see Table 4.6.
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Table 4.6. Hyperparameters for CMRM, CMTT, PLSA and SVM

Model Dataset Hyperparameters

CMRM CorelSmall block size (192), visual codebook size (3,000),

smoothing parameters (α = 0.5, β = 0.1)

CorelLarge block size (192), visual codebook size (3,000),

smoothing parameters (α = 0.2, β = 0.1)

CMTT CorelSmall block size (256), visual codebook size (2,000),

number of singular values kept (50)

CorelLarge block size (256), visual codebook size (2,000),

number of singular values kept (1,000)

PLSA CorelSmall block size (32), visual codebook size (50,000),

number of aspects (400)

CorelLarge block size (32), visual codebook size (50,000),

number of aspects (600)

SVM CorelSmall block size (48),

kernel (visterm kernel with a 20,000-visterm codebook)

CorelLarge block size (48),

kernel (visterm kernel with a 20,000-visterm codebook)

Note that Table 4.6 does not report the regularization parameter (C) for the

SVM as it has been individually tuned for each term.

Before presenting the generalization performance, we briefly compare the

computational time required by the different models, for both indexing and

retrieval. Table 4.7 reports the indexing times needed by PAMIR and the

alternative models. Indexing corresponds to all the computations performed

prior to the submission of the test queries, once the test pictures are available,

excluding the operations related to feature extraction, such as visterm quanti-

zation. Indexing can hence be performed off-line, before the user can interact

with the system. In the case of PAMIR, it includes the training step, plus the

mapping of each test picture to the text space. For bi-modal generative models

(CMRM, CMTT and PLSA), it corresponds to model training, plus the infer-

ence of p(t|p) for each vocabulary term t and each test picture p. In the case of

concept classification SVM, it corresponds to the training of an SVM for each

vocabulary term, and the classification of each test image according to each of

the trained SVMs. Table 4.7 shows that PAMIR training procedure yields the

most efficient training time over CorelLarge. This table also shows that SVM

for concept classification is especially costly: this approach involves training

a model for each vocabulary term, and each model training has a complexity
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Table 4.7. Indexing times for PAMIR and the alternatives models. Execution

times have all been measured in seconds on the same machine (AMD Athlon64,

2.4Ghz, 2GB RAM).

CMRM CMTT PLSA SVM PAMIR

CorelSmall 3 9 240 687 17

CorelLarge 849 4,099 1,025 24,650 450

Table 4.8. Retrieval times for PAMIR and the alternatives models. All models

have the same retrieval complexity. Execution times have all been measured

on the same machine (AMD Athlon64, 2.4Ghz, 2GB RAM).

CMRM CMTT PLSA SVM PAMIR

CorelSmall 0.34 ms per query

CorelLarge 7.94 ms per query

that grows at least quadratically with the training set size [Joachims, 1998].

This makes the application of this technique challenging for large datasets such

as CorelLarge. Of course, the reported times highly depend on implementation

details and optimization tricks (our implementation of PAMIR is available at

www.idiap.ch/pamir/), and should be considered carefully. It should also be

noted that the reported times correspond to a single run of training, while, in a

real-world usage scenario, a variable number of runs might be required depend-

ing on the number of hyperparameter values selected for validation. However,

the results clearly indicate that indexing a corpus with PAMIR is not more

costly than indexing a corpus with the other models. After indexing, all mod-

els then need to compute the dot-product matching between the submitted

query and the textual representations inferred from the text pictures, before

ranking the obtained scores. All models hence yield the same retrieval time,

0.34 msec per query for CorelSmall and 7.94 msec per query for CorelLarge, on

our reference machine, see Table 4.8. This hence means that all models can be

used interactively by the user, without any perceived delay.

4.4.3 Experimental Results

This section evaluates PAMIR and the alternative models over the test parts

of CorelSmall and CorelLarge.
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Table 4.9. Averaged Performance on CorelSmall Test Queries. Bold numbers

report when a model outperforms all others according to the Wilcoxon test at

the 95% confidence level.

CMRM CMTT PLSA SVM PAMIR

AvgP (%) 19.2 19.8 20.7 22.0 26.3

BEP (%) 13.1 13.7 12.8 13.8 17.4

P10 (%) 7.8 7.6 8.7 9.3 10.0

Table 4.9, which reports the results over CorelSmall, shows that PAMIR

outperforms all the alternative evaluated models. Compared to the best alter-

native, SVM, a relative improvement of 21% is reported for AvgP (26.3% for

PAMIR versus 22.0% for SVM). Improvements are also observed for the other

measures, P10 and BEP, which means that the use of PAMIR is advantageous

for both users focussing on the first positions of the ranking (as shown by P10

results) or users focussing on the whole ranking (as shown by AvgP results).

One should note that the relatively low values reported for the P10 results does

not indicate a failure of the models but reflects the difficulty of the task: in fact,

the optimal value for P10 is 20.2% due to the low number of relevant pictures

per query. This therefore means that the PAMIR user focussing only on the

first ten results will retrieve about half the pictures he would have retrieved

using the ideal ranker. In order to verify whether the observed advantage on

the average results could be due to a few queries, we further ran the Wilcoxon

signed rank test to compare PAMIR and each alternative model [Rice, 1995].

This test examines the distribution of the differences in the score obtained for

each query and verifies whether it is symmetric around zero, which would mean

that PAMIR has actually no advantage over the alternative approach. The test

rejected this hypothesis at the 95% confidence level for all alternative models

and all measures, as indicated by the bold numbers in the tables.

In order to compare the models over difficult and easy queries, we split the

set of test queries into an ‘easy’ set, containing the queries with 3 or more

relevant pictures in P s
test, and a ‘difficult’ set, containing the queries with only

one or two relevant pictures in P s
test. Table 4.10 reports the average precision

obtained over the two sets. PAMIR is shown to be the best model over both sets

and its advantage is reported to be greater over the ‘difficult’ set (on this set,

the relative AvgP improvement compared to SVM, the second best model, is

+29%, as compared to +3.2% over the ‘easy’ set). This outcome is certainly due
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Table 4.10. AvgP (%) for Easy and Difficult Queries of CorelSmall. The ‘easy’

query set contains the 421 test queries with 3 or more relevant pictures, while

the ‘difficult’ query set contains the 1, 820 test queries with only 1 or 2 relevant

pictures. Bold numbers report when a model outperforms all others according

to the Wilcoxon test at the 95% confidence level.

CMRM CMTT PLSA SVM PAMIR

Easy Queries 34.0 31.3 38.0 41.9 43.3

Difficult Queries 15.8 17.2 16.7 17.3 22.4

to PAMIR ranking criterion, since previous work showed that similar criteria for

classification are especially adapted to unbalanced problems, i.e. classification

tasks with a low percentage of positive examples [Rakotomamonjy, 2004].

As a further comparison, Table 4.11 reports the average precision obtained

over single and multiple-word queries separately. Several previous papers fo-

cused on single-word queries only, e.g. [Jeon and Manmatha, 2004; Monay and

Gatica-Perez, 2004; Pan et al., 2004], and reporting those results allows for

direct comparison with this literature. The single-word queries correspond to

an easier task since the average number of relevant pictures per query is 9.4

for the single-word queries, compared to 1.8 for the multiple-word queries. The

results reported in Table 4.11 agree with this observation and all models are

reported to reach higher performance on the single-word queries compared to

multiple-word queries. On both query subsets, the advantage of PAMIR is

confirmed. The PAMIR improvement is shown to be greater for multiple-word

queries (+22.3% relative improvement in AvgP compared to the second best

model, SVM) than for single-word queries (+4.0% relative improvement in

AvgP compared to SVM). Two characteristics of PAMIR might explain this

outcome: PAMIR training criterion has shown to be adapted to retrieval prob-

lems with few relevant pictures, which is the case of multiple-word queries.

Moreover, PAMIR is the only model trained over multiple-word queries, which

certainly helps achieving better performance over such queries at test time. In

fact, we observed that, for multiple-word queries, the other models often favor

one of the query terms at the expense of the others. Figure 4.4 shows, for in-

stance, that SVM favors the term ‘car’ at the expense of ‘building’ for the query

‘building car’. On this example, the SVM ranking provides only one picture

containing both cars and buildings, while PAMIR succeed in retrieving all the

3 relevant pictures in the top 5 positions. The PAMIR results even provide a
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Table 4.11. AvgP (%) on Single & Multi-Word Queries of CorelSmall.

CorelSmall contains 179 test queries with a single word and 2, 062 queries with

more than one word. Bold numbers report when a model outperforms all others

according to the Wilcoxon test at the 95% confidence level.

CMRM CMTT PLSA SVM PAMIR

Single-Word Que. 25.8 26.4 31.7 32.7 34.0

Multi-Word Que. 18.6 19.3 19.7 21.0 25.7

non-relevant picture that could have been labeled relevant with looser labeling

instructions (see the fifth picture of the ranking). The other example on Fig-

ure 4.4 is a single word query, ‘petals’. It yields good results for both models,

which retrieve 3 relevant pictures out of 4 in the top 5 positions. One can note

a slight advantage for PAMIR that returns only flower-related pictures. Of

course, these examples have limited statistical values but they give an idea on

the type of ranking the user is facing.

With our setup, some queries appear in both the test and train sets (for

instance, single-word queries are common to both sets). In order to verify the

ability of PAMIR to generalize to new queries, we evaluated our model on the

601 test queries that are not present in the training set. These queries can

be considered as difficult, not only because the model has not seen pictures

relevant to them during training, but also because they have very few relevant

documents (1.03 on average). This second aspect can easily by explained if one

remark that test queries with many relevant test pictures are also likely to have

at least one relevant picture within the training data, which means that such

queries are likely to belong to the training set as well. The results over this set

of queries confirm the results observed on the whole set (see Table 4.12) and

PAMIR is reported to outperform the alternative according to all measures.

Moreover, for all models, the performance is much lower than for the ‘difficult’

query set (see Table 4.10), which indicates that generalization to new queries

deserves to be investigated further in the future.

Overall, the results over CorelSmall outline the advantage of PAMIR over

the alternative solutions. This outcome is certainly due to our discriminative

learning strategy. The training of the other models either maximizes the joint

picture/caption likelihood (CMTT, CMRM and PLSA) or minimizes the error

rate of the per-term classification problems (SVM for concept classification),

while our model relies on a ranking criterion, related to the final retrieval per-
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Table 4.12. Results over Test-Only Queries of CorelSmall Queries. Among the

2, 241 test queries of CorelSmall, 601 queries are not appearing in the training

or in the validation set. Bold numbers report when a model outperforms all

others according to the Wilcoxon test at the 95% confidence level.

CMRM CMTT PLSA SVM PAMIR

AvgP (%) 12.7 12.9 11.1 10.1 16.1

BEP (%) 7.1 6.3 4.1 3.1 7.7

P10 (%) 2.5 2.7 2.9 2.5 3.5

Table 4.13. Averaged Performance on CorelLarge Queries. Bold numbers

report when a model outperforms all others according to the Wilcoxon test at

the 95% confidence level.

CMRM CMTT PLSA SVM PAMIR

AvgP (%) 2.11 2.23 2.61 3.60 3.65

BEP (%) 1.26 1.46 1.69 1.81 1.90

P10 (%) 1.44 1.49 1.79 2.26 2.53

formance. This difference has shown to be especially helpful for both difficult

queries (queries with few relevant pictures) and multiple-word queries.

Table 4.13 reports the results of the experiments performed over CorelLarge.

The reported performance over this set are much lower than for CorelSmall,

which is not surprising considering the difficulty of the task. In CorelLarge, the

relevant pictures account for 0.27 per thousand on average, which should be

compared to 4.7 per thousand on average for CorelSmall. Moreover, the limited

amount of relevant material present in the training set of CorelLarge also makes

this task more difficult: in CorelLarge, the average number of relevant pictures

per training query is 3.79, which should be compared to 5.33 for CorelSmall (see

Table 4.1 and 4.2). Hence, the models trained over CorelLarge should address

a more difficult ranking problem, while having seen less relevant pictures to

generalize from. In fact, the statistics of CorelLarge make this task closer to

real world applications, such as image search for stock photography or news

wire services, and the results over CorelLarge are hence of a greater interest

from a user perspective.

Although low, the results over CorelLarge are much higher than random
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petals building car

(4 relevant pictures in P s
test) (3 relevant pictures in P s

test)

PAMIR SVM PAMIR SVM

Figure 4.4. Example: the top 5 pictures obtained with PAMIR and SVM,

for two queries over CorelSmall. Higher resolution images, as well as other

examples, are available at www.idiap.ch/pamir/.

performance for all models (e.g. random performance is ∼ 0.03% for P10 which

is much lower than 1.44%, the worst P10 results, obtained with CMRM). All

approaches can hence leverage from the training data. In fact, even if the

models are far from optimal performance, they can still be useful to the user,

as illustrated by the two queries shown on Figure 4.5. The first example ‘tree

snow people’ corresponds to a relatively easy query with 13 relevant pictures in

the test set. Like for the ‘building car’ example on CorelSmall, the SVM solution

is dominated by one of the concepts, ‘snow’, at the expense of the others, and

does not retrieve any relevant picture in the top 5. On the contrary, PAMIR,

which is directly trained from multiple-word queries, yields high performance

with 3 relevant pictures within the top 5 positions. The second query ‘zebra

herd’ has less relevant pictures (4 in the test set). The results show a slight
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advantage for PAMIR: our model retrieves two relevant pictures at the third

and fourth positions, while the SVM retrieves one relevant picture at the fifth

position. This example illustrates that both models are often confused by

similar pictures (savanna scenes in this case) for concepts with few training

instances (only 22 pictures contain zebras among the 14,861 pictures of P l
train).

Like for CorelSmall, the results in Table 4.13 clearly show the advantage of

PAMIR over the other approaches. In fact, model comparison yields similar

conclusions over CorelSmall and CorelLarge: CMTT and CMRM reach com-

parable performance levels, PLSA performs better than the other generative

models, but not as well as the SVM. Again, PAMIR yields the best results.

Furthermore, the Wilcoxon test over CorelLarge concludes that PAMIR sig-

nificantly outperforms each alternative, at the 95% confidence level, for P10

and BEP. For AvgP, the test concludes that PAMIR outperforms all genera-

tive models (CMTT, CMRM and PLSA), and yields an AvgP similar to the

SVM’s. Overall, the results over both sets are consistent and show the advan-

tage of our discriminative model over the alternatives.

4.5 Conclusions

We have proposed a discriminative approach to the retrieval of images from

text queries. In such a task, the model receives a picture corpus P and a text

query q. It should then rank the pictures of P such that the pictures relevant

to q appear above the others. Contrary to previous approaches that gener-

ally rely on an image auto-annotation framework, our learning procedure aims

at selecting the model parameters likely to yield a high ranking performance

over the unseen test data. For that purpose, we introduced a loss inspired

from ranking SVM [Joachims, 2002] and formalized the notion of margin for

our retrieval problem. We then introduced a learning algorithm building upon

Passive-Aggressive (PA) minimization [Crammer et al., 2006]. The resulting

model, Passive-Aggressive Model for Image Retrieval (PAMIR), has several ad-

vantages: its learning objective is related to the final retrieval performance, its

training procedure allows an efficient for learning over large datasets, and the

model parameterization can benefit from picture kernels recently introduced

in the computer vision literature [Kondor and Jebara, 2003; Lyu, 2005; Wall-

raven and Caputo, 2003]. These advantages actually yield a model effective

in practice, as shown by our experiments over stock photography data. For

instance, over the standard Corel benchmark [Duygulu et al., 2002], PAMIR

yields 26.3% average precision, which should be compared to 22.0% for SVM

for concept classification, the best alternative. Our model has notably shown



70 Retrieving Images from Text Queries

tree snow people zebra herd

(13 relevant pictures in P l
test) (4 relevant pictures in P l

test)

PAMIR SVM PAMIR SVM

Figure 4.5. Example: the top 5 pictures obtained with PAMIR and SVM

for two queries over CorelLarge. Higher resolution images, as well as other

examples, are available at www.idiap.ch/pamir/.

to be especially advantageous over multiple-word queries and difficult queries

with few relevant pictures.

Although it outperforms the alternative models, PAMIR is far from reaching

perfect performance, especially over the challenging CorelLarge data. Several

directions could be explored to improve our model. First, PAMIR loss function

could be changed to give more emphasis on the top of the ranking, as most

users examine only the first results. An approach derived from [Joachims, 2005]

could be applied to optimize measures like P10. The loss could also be modified

to optimize measures considering relevance assessments with gradual relevance

levels, such as Discounted Cumulative Gain [Voorhees, 2001]. Another useful

extension would be the prediction of a cut-off rank, that is, a ranking position

below which the user is unlikely to encounter any relevant documents. Solutions
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inspired from [Brinker and Huellermeier, 2005] could help solving this problem.

Also, it would worth investigating further on the use of kernels for local features,

especially to model the spatial relationships between features [Sivic et al., 2005].

The proposed model, along with the reported results, hence advocates for

addressing the image retrieval problem through a discriminative ranking ap-

proach, and open several possible directions of research to fully benefit from

this formalism.

4.6 Contributions

This chapter summarizes [Grangier et al., 2006b] and [Grangier and Bengio,

2008]. We have also compared the effectiveness of different local features, rely-

ing on PAMIR [Grangier et al., 2006a]. Based on the same learning objective,

we have proposed a Neural Network for image retrieval [Grangier and Bengio,

2006].

� D. Grangier, F. Monay, and S. Bengio. A discriminative approach for the retrieval of

images from text queries. In European Conference on Machine Learning (ECML), pages

162–173, Berlin, Germany, September 2006b.

� D. Grangier and S. Bengio. A discriminative kernel-based model to rank images from

text queries. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI).,

2008. (in press).

� D. Grangier, F. Monay, and S. Bengio. Learning to retrieve images from text queries

with a discriminative model. In International Workshop on Adaptive Multimedia Retrieval

(AMR), pages 42–56, Geneva, Switzerland, July 2006a.

� D. Grangier and S. Bengio. A neural network to retrieve images from text queries. In

International Conference on Artificial Neural Networks (ICANN), volume 2, pages 24–34,

Athens, Greece, September 2006.
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5 Discriminative Keyword Spotting

This chapter is concerned with the task of keyword spotting. This task

aims at detecting the utterances of a given keyword in speech recordings and

relates to numerous applications, such as voice mail retrieval or voice command

detection. This work proposes a discriminative approach to this problem and

introduces a learning algorithm, which aims at maximizing the Area Under

the receiver operating Curve (AUC), given a set of training spotting problems.

Interestingly, this AUC maximization framework yields a learning criterion

related to the pairwise loss for rankings used for image retrieval in the previous

chapter. Building upon our image retrieval work, the proposed algorithm relies

on a large margin formulation of the spotting task, and adopts an efficient

online learning strategy.

Our spotting solution contrasts with current spotting strategies. Previ-

ous work concentrated mainly on several variants of Hidden Markov Models

(HMMs) to address this intrinsically sequential problem. While the HMM-

based approaches constitute the state-of-the-art, they suffer several known

limitations. Most of these limitations are not specific to keyword spotting

HMMs, and also affect speech recognition HMMs, as pointed out previously,

e.g. [Keshet et al., 2006]. We can for instance mention the predominance of the

emission probabilities in the likelihood, which tends to neglect duration and

transition models, or the Expectation-Maximization training procedure, which

is prone to convergence to local optima. Other drawbacks are specific to the

application of HMMs to the keyword spotting task. In particular, the rarity of

the occurrences of the targeted keyword often requires ad-hoc modifications of

the HMM topology, transition probabilities or decoding algorithm. However,

the most important limitation of HMM-based approaches lies in their training

objective. Typically, HMM learning aims at maximizing the likelihood of tran-
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scribed utterances, and does not provide strong guarantees in terms of keyword

spotting performance.

In this study, we propose a model to circumvent those limitations. Our

approach adopts a learning objective related to the final keyword spotting

task. At training time, our keyword spotter is presented a set of spotting

problems and the parameters are learned to maximize the performance over

these problems, measured by the AUC, the most common measure to evaluate

keyword spotters. Furthermore, the proposed learning algorithm adopts a large

margin approach and provides theoretical guarantees regarding generalization

performance. This framework hence contrasts with HMMs, where parameter

learning is not tightly related to the keyword spotting problem. Moreover,

our model enjoys further advantages compared to HMMs, including its convex

optimization procedure, which avoids convergence to local optima, or its non-

probabilistic framework, which offers greater flexibility for selecting the relative

importance of duration modeling with respect to acoustic modeling. These

advantages actually convert into higher spotting performance, according to

our experiments performed over TIMIT and WSJ data. For instance, the best

HMM configuration over WSJ reaches 88.4% AUC, compared to 92.2% for our

discriminative spotter.

The remainder of this chapter is organized as follows: Section 5.1 describes

prior work on keyword spotting, Section 5.2 introduces our discriminative ap-

proach, Section 5.3 presents different experiments comparing the proposed

model to an HMM-based solution. Finally, Section 5.4 draws some conclu-

sions and delineates possible directions for future research.

5.1 Related Work

Research in keyword spotting has paralleled the development of the Auto-

matic Speech Recognition (ASR) domain in the last thirty years. Like ASR,

keyword spotting has first been addressed with models based on Dynamic Time

Warping (DTW) [Bridle, 1973; Higgins and Wohlford, 1985]. Then, approaches

based on discrete HMMs have been introduced [Kawabata et al., 1988]. Finally,

discrete HMMs have been replaced by continuous HMMs [Rabiner and Juang,

1993].

In all cases, the core objective of keyword spotting is to discriminate be-

tween the segments of the signal belonging to a keyword utterance and the

others. For that purpose, the first approaches based on DTW proposed to

compute the alignment distance between a template utterance of the keyword

and all possible subsequences of the test signal [Bridle, 1973]. In this con-



Related Work 75

text, the keyword is considered as detected for the subsequences for which

the distance is below some predefined threshold. Such approaches are however

greatly affected by speaker mismatch and varying recording conditions between

the template sequence and the test signal. To gain some robustness, it has then

been proposed to compute alignment distances not only with respect to the tar-

geted keyword template, but also with respect to other word templates [Higgins

and Wohlford, 1985]. Precisely, given a test example, such a system identifies

the concatenation of templates with the lowest distance to the signal and the

keyword is considered as detected if this concatenation contain the keyword

template. Therefore, the keyword alignment distance is not considered as an

absolute number, but relatively to the distances to the other templates, which

increase robustness with respect to changes in the recording conditions.

Along with the development of the speech research, increasingly large amount

of labeled speech data were collected, and DTW-based techniques started show-

ing their limitations to leverage from large training sets. Consequently, discrete

HMMs were introduced for ASR [Bahl et al., 1986], and then for keyword spot-

ting [Kawabata et al., 1988; Wilpon et al., 1990]. A discrete HMM assumes

that the observations of a sequence of discrete events (i.e. the quantized acous-

tic vectors of an utterance) are independent conditioned on an hidden state

variable that follows a Markov process. This type of model introduces sev-

eral advantages compared to DTW-based approaches, including an improved

robustness to speaker and channel changes, when several training utterances

of the targeted keyword are available. However, the most important evolu-

tion introduced with the HMM certainly lies in the development of phone or

triphone-based modeling [Lee and Hon, 1988a; Kawabata et al., 1988; Rose

and Paul, 1990], in which a word model is composed of several sub-unit mod-

els shared across words. This means that the model of a given word not only

benefit from the training utterances containing this word, but also from all the

utterances containing its sub-units. A further advantage of phone-based mod-

eling is the ability to spot words unavailable at training time, as this paradigm

allows one to build a new word model by composing already trained sub-unit

models. This aspect is very important, as, in most applications, the set of test

keywords is not known in advance.

Soon after the application of discrete HMMs to speech problems, continu-

ous density HMMs have been introduced in the ASR community [Rabiner and

Juang, 1993]. Continuous HMMs remove the need for acoustic vector quan-

tization, as the distributions associated with the HMM states are continuous

densities, generally Gaussian Mixtures. The learning of both the Gaussian Mix-
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Keyword HMM

Garbage HMM

Figure 5.1. HMM topology for keyword spotting with a Viterbi best path

strategy. This approach verifies whether the Viterbi best path passes through

the keyword sub-model.

ture parameters and the state transition probabilities is performed in a single

integrated framework, maximizing the likelihood of the training data given its

transcription through the Expectation-Maximization algorithm [Bilmes, 1998].

This approach has shown to be more effective and allows for greater flexibil-

ity for speaker or channel adaptation [Rabiner and Juang, 1993]. It is now the

most widely used approach for both ASR and keyword spotting. In the context

of keyword spotting, different strategies based on continuous HMMs have been

proposed. In most cases, a sub-unit based HMM is trained over a large corpus

of transcribed data and a new model is then built from the sub-unit models.

Such a model is composed of two parts, a keyword HMM and a filler or garbage

HMM, which respectively model the keyword and non-keyword parts of the sig-

nal. Figure 5.1 shows such a topology. Given such a model, keyword detection

is performed through Viterbi decoding, i.e. by searching for the sequence of

states that yields the highest likelihood for the provided test sequence. Key-

word detection is determined by checking whether the Viterbi best-path passes

through the keyword model or not. In such a model, the selection of the transi-

tion probability in the keyword sets the trade-off between low false alarm rate

(i.e. detecting a keyword where it is not present), and low false rejection rate

(i.e. not detecting a keyword where it is indeed present). Another important

aspect of this approach lies in the modeling of non-keyword parts of the signal,

and several choices are possible for the garbage HMM. The simplest choice
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(a) (b)

Keyword HMM Garbage HMMGarbage HMM Garbage HMM

Figure 5.2. HMM topology for keyword spotting with a likelihood ratio strat-

egy. This approach compares the likelihood of the sequence given the keyword

is uttered, estimated with (a), to the likelihood of the sequence given the key-

word is not uttered, estimated with (b).

models garbage with an HMM that fully connects all sub-units models [Rose

and Paul, 1990], while the most complex choice models garbage with a full-large

vocabulary HMM, where the lexicon excludes the keyword [Weintraub, 1993].

This latter approach obviously yields a better garbage model, using additional

linguistic knowledge. This advantage however induces a higher decoding cost

and requires larger amount of training data, in particular for language model

training. Besides practical concerns, one can conceptually wonder whether an

automatic spotting approach should require such a large linguistic knowledge.

Of course, several variations of garbage models exist between the two extreme

examples pointed above, see [Boite et al., 1993] for instance.

Viterbi decoding relies on a sequence of local decisions to determine the

best path, which can be fragile with respect to local model mismatch. In the

context of HMM-based keyword spotting, a keyword can be missed, if only

its first phoneme suffers such a mismatch, for instance. To gain some robust-

ness, likelihood ratio approaches have been proposed [Weintraub, 1995; Rose

and Paul, 1990]. In this case, the confidence score outputted by the keyword

spotter corresponds to the likelihood ratio estimated by an HMM requiring an

occurrence of the keyword, and an HMM excluding it, see Figure 5.2. Detection

is then performed by comparing the outputted score to a predefined threshold.

Different variations on this likelihood ratio approach have then been devised,

such as computing the ratio only on the part of the signal detected as the key-

word by the keyword model [Junkawitsch et al., 1997]. Overall, all the above

described methods are variations over the same HMM paradigm, which consists

in training a generative model through likelihood maximization, before intro-



78 Discriminative Keyword Spotting

ducing different modifications prior to decoding in order to address the keyword

spotting task. In other words, these approaches do not propose to train the

model to maximize the spotting performance, and the keyword spotting task

is only introduced after training.

Only few studies have proposed discriminative parameter training approaches

to circumvent this weakness [Sukkar et al., 1996; Sandness and Hetherington,

2000; Weintraub et al., 1997; Benayed et al., 2003]. [Sukkar et al., 1996] pro-

poses to maximize the likelihood ratio between the keyword and garbage models

for keyword utterances and to minimize it over a set of false alarms generated

by a first keyword spotter. [Sandness and Hetherington, 2000] proposes to

apply Minimum Classification Error (MCE) to the keyword spotting problem.

The training procedure updates the acoustic models to lower the score of non-

keyword models within keyword occurrences. However, this procedure does not

focus on false alarms, and does not aim at lowering the keyword score in non-

keyword parts of the signal. Other discriminative approaches have focused on

combining different HMM-based keyword detectors. For instance, [Weintraub

et al., 1997] trains a neural network to combine likelihood ratios from different

models. [Benayed et al., 2003] relies on support vector machines to combine

different averages of phone-level likelihoods. Both of these approaches propose

to minimize the error rate, which equally weights the two possible spotting

errors, false positive (or false alarm) and false negative (missing a keyword

occurrence, often called keyword deletion). This measure is however barely

used to evaluate keyword spotters, due to the unbalanced nature of the prob-

lem. Precisely, the targeted keywords generally occurs rarely and the number

of potential false alarms hence highly exceeds the number of potential missed

detections. In this case, the useless model which never predicts the keyword

avoids all false alarms and yields a very low error rate, with which it is difficult

to compete. For that reason, the Area Under the receiver operating Curve

(AUC), which plots the true positive rate versus the false alarm rate, is more

informative and is commonly used to evaluate models. The maximization of the

AUC would hence be an appropriate learning objective for the discriminative

training of a keyword spotter. To the best of our knowledge, only [Chang, 1995]

proposed an approach targeting this goal. This work introduces a methodology

to maximize the Figure-Of-Merit (FOM), which corresponds to the AUC over

a specific range of false alarm rates. However, the proposed approach relies

on various heuristics, such as gradient smoothing and sorting approximations,

which does not ensure any theoretical guarantee on FOM maximization. Also,

these heuristics involve the selection of several hyperparameters, that challenges
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a practical use.

In the following, we introduce a model that aims at maximizing the AUC

over a set of training spotting problems, which constitutes a truly discrimina-

tive approach to the keyword spotting problem. The proposed model relies on

large-margin learning and provides theoretical guarantees regarding the gen-

eralization performance. Furthermore, its efficient learning procedure ensures

scalability toward large problems and simple practical use, with only 2 hyper-

parameters to select.

5.2 Discriminative Keyword Spotting

This section formalizes the keyword spotting problem, and introduces the

proposed approach. For that purpose, we first describe the methodology gen-

erally employed to evaluate keyword spotters. This allows us to introduce a

loss derived from the area under the Receiver Operating Curve (ROC), the

most common measure of keyword spotting performance. Then, we present

our model parameterization and the training procedure to minimize efficiently

a regularized version of the loss. Finally, we explain the large margin interpre-

tation of our method, and its generalization guarantees.

5.2.1 Problem Setting

In the keyword spotting task, we are provided with a speech utterance x along

with a keyword k, and we should determine whether k is uttered in x. Formally,

if the keyword k is represented as a sequence of phonemes, pk = (pi)L
i=1 ∈ P∗,

and the speech utterance x is represented as a sequence of frames (or acoustic

vectors), x = (xi)T
i=1 ∈ X ∗, we should build a function

f−1/1 : P∗ ×X ∗ → {−1, +1},

which detects the keyword f−1/1(pk, x) = +1 or rejects it f−1/1(pk, x) = −1.

For that purpose, we introduce a keyword spotter

f : P∗ ×X ∗ → R,

whose output f(pk, x) expresses the confidence that k is uttered in x. This

confidence value can then be compared to a threshold b, to accept f(pk, x) > b,

or reject f(pk, x) < b the utterance of k in x.

Such a keyword spotter f can be evaluated relying on the Receiver Operat-

ing Curve (ROC). This curve plots the true positive rate (TPR) as a function

of the false positive rate (FPR). The TPR measures the fraction of keyword
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occurrences correctly spotted, while the FPR measures the fraction of negative

utterances yielding a false alarm. The points on the curve are obtained by

sweeping the threshold b from the largest value outputted by the system to

the smallest one. These values hence correspond to different trade-offs between

the two types of errors a keyword spotter can make, i.e. missing a keyword

utterance or rising a false alarm. In order to evaluate a keyword spotter over

various trade-offs, it is common to report the Area Under the ROC (AUC).

This area hence corresponds to an averaged performance, assuming a flat prior

over the different operational settings. Given a keyword k, a set of positive

utterances X+
k in which k is pronounced, and a set of negative utterances X−

k

in which k is not pronounced, the AUC can be written as,

Ak =
1

|X+
k ||X

−
k |

∑
x+ ∈ X+

k

x− ∈ X−
k

1f(pk,x+)>f(pk,x−),

where | · | refers to set cardinality and 1· refers to the indicator function. Ak

hence estimates the probability that the score assigned to a positive utterance

is greater than the score assigned to a negative utterance. This quantity is also

referred to as the Wilcoxon Mann Whitney statistics [Wilcoxon, 1945; Mann

and Whitney, 1947; Cortes and Mohri, 2004].

As one is often interested in the expected performance over any keyword, it

is common to plot the ROC averaged over a set of evaluation keywords Ktest,

and to compute the corresponding averaged AUC,

Atest =
1

|Ktest|
∑

k∈Ktest

Ak.

In this study, we introduce a large-margin approach to learn a keyword spotter

maximizing the averaged AUC.

5.2.2 A Loss to Maximize the AUC

In order to build our keyword spotter f , we are given training data consisting

of a set of training keywords Ktrain and a set of training utterances. For each

keyword k ∈ Ktrain, we denote with X+
k the set of utterances containing the

keyword and with X−
k the other utterances. Furthermore, for each positive

utterance x ∈ X+
k , we are also provided with the segmentation s of the keyword

phoneme sequence pk over x. Such a segmentation, which provides the start

and end points of each phoneme, can either be provided by annotators or

localized with an alignment algorithm, such as [Keshet et al., 2007b]. Formally,
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s1 s4s3s2

kkeyword

keyword phoneme sequence

segmentation sequence

star

s t aa rpk

s+ s5

Figure 5.3. Example of our notation. The waveform of the spoken utterance

“a lone star shone...” taken from the TIMIT corpus. The keyword k is the

word star. The phonetic transcription pk along with the segmentation sequence

s+ are schematically depicted in the figure.

a segmentation is noted as,

s = (si)Lk+1
i=1 ,

where Lk denotes the number of phoneme in k, and si denotes the start time

of the ith phoneme, which also corresponds to the end time of the (i − 1)th

phoneme. Figure 5.3 illustrates our notations.

Provided with such data, the training AUC is

Atrain =
1

|Ktrain|
∑

k∈Ktrain

1
|X+

k ||X
−
k |

∑
x+ ∈ X+

k

x− ∈ X−
k

1f(pk,x+)>f(pk,x−),

which can be compactly written as,

Atrain =
∑

(k,x+,x−)∈Ttrain

βk 1f(pk,x+)>f(pk,x−),

if we define Ttrain = {(k, x+, x−),∀k ∈ Ktrain,∀x+ ∈ X+
k ,∀x− ∈ X−

k } and

βk = 1
|Ktrain||X+

k ||X−
k | . The selection of a model maximizing this AUC is equiv-

alent to minimizing the loss

L0/1(f) = 1−Atrain

=
∑

(k,x+,x−)∈Ttrain

βk 1f(pk,x+)≤f(pk,x−).

L0/1 is however not suitable for model training since it is piecewise constant,

which means that its gradient with respect to f is zero. Therefore, we introduce
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an upper bound of L0/1,

L(f) =
∑

(k,x+,x−)∈Ttrain

βk |1− f(pk, x+) + f(pk, x−)|+, (5.1)

where |a|+ denotes max(0, a). It is easy to verify that L(f) ≥ L0/1(f), since

∀a, b, |1 − a + b|+ ≥ 1a≤b. Moreover, this loss ensures that if L(f) = 0,

then Atrain = 1, since ∀a, b, |1− a + b|+ = 0⇒ a > b + 1⇒ a > b. This loss

is related to the pairwise ranking loss used for the retrieval of images from text

queries in Chapter 4. In fact, our AUC maximization objective can be formu-

lated as a ranking objective. Given a keyword and a set of speech utterances,

our goal is to rank the utterances containing the keyword above the others.

Then, measuring the number of swapped utterance pairs over this ranking task

is equivalent to measuring 1 − AUC over the original keyword spotting prob-

lem. This parallel further justifies our approach, since the pairwise loss has

already shown to be to successful over highly unbalanced retrieval problems,

see Chapter 4 or [Joachims, 2002], and keyword spotting also corresponds to

an highly unbalanced setup, where the utterances containing the keyword only

account for a very small part of the data.

5.2.3 Model Parameterization

Our keyword spotter f is parameterized as

fw(x, pk) = max
s

w · φ(x, pk, s),

where w is a vector of importance weights, φ(x, pk, s) is a feature vector, mea-

suring different characteristics related to the confidence that pk is pronounced

in x with the segmentation s. In other words, our keyword spotter outputs a

confidence score by maximizing a weighted sum of feature functions over all

possible segmentations. This maximization corresponds to a search over an ex-

ponentially large number of segmentations. Nevertheless, it can be performed

efficiently by selecting decomposable feature functions, which allows the appli-

cation of dynamic programming techniques, like for HMMs (see Appendix A.2).

Precisely, our feature functions are borrowed from a phoneme alignment al-

gorithm [Keshet et al., 2007b]. These 7 features measure the match between the

acoustic sequence x and the phoneme sequence p, as explained in the following.

There are four phone transition functions, which aim at detecting tran-

sition between phonemes. For that purpose, they compute the frame distance

between the frames before and after a hypothesized transition point, i.e.

∀i = 1, 2, 3, 4, φi(x, pk, s) =
1
L

L−1∑
j=2

d(xsj−i, xsj+i)
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where d refers to the Euclidean distance and L refers to the number of phonemes

in keyword k.

The frame classifier function relies on a frame-based phoneme classifier

to measure the match between each frame and the hypothesized phoneme class,

φ5(x, pk, s) =
1
L

L∑
i=1

si+1−1∑
j=si

1
si+1 − si

g(xj , pi) (5.2)

where g refers to the phoneme classifier. Different phoneme classifiers might

be applied for this feature. In our case, we conduct experiments relying on two

alternative solutions. The first assessed classifier is a hierarchical large-margin

classifier [Dekel et al., 2004], while the second classifier is a Bayes classifier with

one Gaussian Mixture per phoneme class. In the first case, g is defined as the

phoneme confidence outputted by the classifier, while, in the second case, g is

defined as the log posterior of the class g(x, p) = log(P (p|x)). The presentation

of the training setup, as well as, the empirical comparison of both solutions,

are deferred to Section 5.3.

The phone duration function measures the adequacy of the hypothesized

segmentation s, with respect to a duration model,

φ6(x, pk, s) =
1
L

L∑
i=1

logN (si+1 − si; µpi
, σpi

),

where N () refers to the likelihood of a Gaussian duration model, whose mean

µp and variance σ2
p parameters for each phoneme p are estimated over the

training data.

The speaking rate function measures the stability of the speaking rate,

φ7(x, pk, s) =
1
L

L∑
i=2

(ri − ri−1)2,

where ri refers to the estimate of the speaking rate for the ith phoneme,

ri =
si+1 − si

µpi

.

This set of seven functions has been used in our experiments. Of course, this

set can easily be extended to incorporate further features, such as confidences

from a triphone frame classifier or the output of a more refined duration model.

5.2.4 An Iterative Training Algorithm

As the model parameterization is introduced, our objective is now to iden-

tify the vector w minimizing a regularized version of the loss L(fw) to avoid
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overfitting,

LReg(fw) = ‖w‖2 + C
∑

(k,x+,x−)∈Ttrain

βk l(w; pk, x+, x−),

where

l(w; pk, x+, x−) = |1−max
s

w · φ(x+, pk, s) + max
s

w · φ(x−, pk, s)|+

and C is a hyperparameter setting the importance of the training loss versus the

regularizer. One can note that LReg(fw) is not a convex function of w. In order

to benefit from the guarantees of convex optimization [Boyd and Vandenberghe,

2004], we propose to substitute this objective function with the following convex

upper bound

LCReg(fw) = ‖w‖2 + C
∑

(k,x+,x−)∈Ttrain

βk lC(w; pk, x+, x−),

where

lC(fw; pk, x+, x−) = |1−w · φ(x+, pk, s+) + max
s

w · φ(x−, pk, s)|+,

and s+ refers to the segmentation of pk over x+ provided by the training data.

One can check that LCReg(fw) ≥ LReg(fw), since

w · φ(x+, pk, s+) ≤ max
s

w · φ(x+, pk, s).

In addition to convexity, LCReg has also a computational advantage as it divides

the training cost due to dynamic programming by two: the maximization over

all possible segmentations should no longer be performed for each positive

example x+ but only for each negative example x−.

The minimization of LCReg(fw) with respect to w can either be performed

by cutting plane methods [Tsochantaridis et al., 2005] or by passive-aggressive

optimization [Crammer et al., 2006]. In this work, we rely on the latter solution

which yields an efficient, online training procedure close to the one used in

Chapter 4. This procedure learns the weight vector iteratively by visiting the

training triplets of Ttrain one after another. The procedure starts with the null

vector w0 = 0. Then, at iteration i ≥ 1, it considers the ith training triplet

(ki, x
+
i , x−i ) and predicts the segmentation of the negative utterance x−,

s−i = arg max
s

wi−1 · φ(x−i , pk
i , s).

Defining

∆φi = φ(x+
i , pk

i , s+
i )− φ(x−i , pk

i , s−i ),
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the next weight vector is then selected as a trade-off between minimizing the

loss over the current triplet and remaining close to the previous weight,

wi = arg min
w

1
2
‖w −wi−1‖2 + c βki |1−w ·∆φi|+, (5.3)

where the hyperparameter c controls this trade-off. Equation (5.3) can actually

be solved in closed form [Crammer et al., 2006], yielding

wi = wi−1 + αi∆φi,

where αi = min
(

c βki ,
|1−wi−1 ·∆φi|+

‖∆φi‖2

)
.

This update is referred to as passive-aggressive, since the algorithm passively

keeps the previous weight (wi = wi−1) if the loss over the current training

triplet is already zero (|1−wi−1 ·∆φi|+ = 0), while it aggressively updates it

to cancel this loss otherwise. At the end of the training procedure, when all

training triplets have been visited, the best weight w∗ among {w0, . . .w|Ttrain|}
is selected over a set of validation triplets Tvalid. The hyperparameter c is also

selected relying on the validation data.

The pseudo-code of the algorithm is given in Algorithm 5.1. This passive

aggressive approach hence requires the selection of two hyperparameters, the

aggressiveness c and the effective number of iterations n, which corresponds

to the index of the selected weight w∗. These two parameters implicitly se-

lects C in LCReg, since they determine the trade-off between minimizing the

training loss lC and the regularizer. In fact, during training, the training loss

is descreasing, while, at the same time an upper bound on ‖w‖ is increasing.

Moreover, c influences the convergence rate, see Chapter 4 and [Crammer et al.,

2006]. Hence, both n and c set the trade-off between the smoothness of the

solution and the training accuracy.

Algorithm 5.1: Passive-Aggressive Training
Input: Training set Ttrain, validation set Tvalid; parameter c;
Initialize w = 0.

foreach (ki, x
+
i , x−i ) ∈ Ttrain do

s−i = arg maxs wi−1 · φ(pk
i , x−i , s)

∆φi = φ(pk
i , x+

i , s+
i )− φ(pk

i , x−i , s−i )

if wi−1 ·∆φi < 1 then

αi = min
(

c βki ,
1−wi−1 ·∆φi

‖∆φi‖2

)
wi = wi−1 + αi ·∆φi

end
end

Output: w∗ achieving the highest AUC over Tvalid.
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φ(x+, pk, s+)

φ(x−, pk, s)

φ(x−, pk, s′)

w

margin

{

Figure 5.4. The feature vectors are ordered according to their projection onto

w. A positive example φ(x+, pk, s+) should appear above any negative example

φ(x+, pk, s),∀s, with a margin of at least 1
‖w‖ .

5.2.5 Large Margin Keyword Spotting

This section explains why the minimization of LReg(fw) corresponds to a large

margin approach. LReg(fw) combines two terms, the regularizer and the loss.

The loss sums lC(fw; pk, x+, x−) over the training triplets (pk, x+, x−) ∈ Ttrain.

For each term, the lowest possible value lC(fw; pk, x+, x−) = 0 is reached when,

w · φ(x+, pk, s+)−max
s

w · φ(x−, pk, s) > 1,

which is equivalent to

∀s, w · φ(x+, pk, s+)−w · φ(x−, pk, s) > 1.

These inequalities can be rewritten as,

∀s, u · φ(x+, pk, s+)− u · φ(x−, pk, s) >
1
‖w‖

, (5.4)

where u corresponds to the unit vector directing w, i.e u = w
‖w‖ . Hence, the

loss part of our objective function ensures that the projection of the positive

feature vector φ(x+, pk, s+) along the direction u is ranked above the projection

of any negative feature vector φ(x−, pk, s), with a least a margin of 1
‖w‖ , see

Figure 5.4. Therefore, the regularizer ‖w‖2 can be interpreted as a margin

maximization term. The large margin framework ensures good generalization

properties, as analyzed in [Vapnik, 1995]. For instance, one can remark that
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the satisfaction of (5.4) implies that the score of the positive utterance x+

remains above the score of the negative one x−, even when introducing noise

terms ν, ν′, whose amplitudes ‖ν‖, ‖ν′‖ remain below 1
2‖w‖ ,

∀s, u · (φ(x+, pk, s+) + ν) > u · (φ(x−, pk, s) + ν′).

5.3 Experiments and Results

We conducted two types of experiments to evaluate the proposed discrimina-

tive approach. First, we learned the parameters of our model over the training

set of TIMIT, and compared its performance against an HMM baseline over

the test set of TIMIT. Second, we measured the robustness of both models with

respect to changing recording conditions. For this second set of experiments,

we evaluated the models learned over TIMIT on Wall Street Journal (WSJ)

data.

5.3.1 The TIMIT Experiments

The TIMIT corpus [Garofolo, 1993] consists in read speech from 630 Ameri-

can speakers, with 10 utterances per speaker. The corpus provides manually

aligned phoneme and word transcriptions for each utterance. It also provides

a standard split into training and testing data. From the training part of the

corpus, we extract three disjoint sets consisting of 1500, 300 and 200 utter-

ances. The first set acts as the training set of the phoneme classifier used by

our fifth feature function φ5. The second set acts as the training set for our

discriminative keyword spotter, while the third set acts as the validation set to

select the hyperparameter c and the best weight w seen during training. The

test set is solely used for evaluation purposes.

Mel Frequency Cepstral Coefficients (MFCC), along with their first (∆)

and second derivatives (∆∆), are extracted every 10 ms. These features are

used by our first five feature functions φ1, . . . , φ5. For our fifth feature function

φ5, two types of phoneme classifiers are experimented, a large margin phoneme

classifier and a GMM model [Bilmes, 1998]. Both classifiers are trained to

predict 39 phoneme classes [Lee and Hon, 1988b] over the first part of the

training set. The large margin classifier corresponds to a hierarchical classifier

relying on the Gaussian kernel [Dekel et al., 2004]. This classifier exploits the

dependency between phoneme classes, as formalized by the phonetic tree of

American English [Rabiner and Schafer, 1978]. In this case, the margin score

assigned to each frame for a given phone is used as the function g in φ5, see

Equation (5.2). The GMM model corresponds to a Bayes classifier combining
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one GMM per class and the phoneme prior probabilities, both learned from

the training data. In this case, the log posterior of a phone given the frame

vector is used as the function g in φ5, see Equation (5.2). The hyperparameters

of both phoneme classifiers are selected to maximize the frame accuracy over

part of the training data held out during parameter fitting. The discriminative

keyword spotter relying on the features from the hierarchical phoneme classifier

is referred as Discriminative/Hier in the following, while the model relying

on the GMM log posteriors is referred as Discriminative/GMM.

We compare the results of both models against an HMM baseline, in which

each phoneme is modeled with a left-right HMM of 5 emitting states. The den-

sity of each state is modeled with a 40-Gaussian GMM. Training is performed

over the whole TIMIT training set. Embedded training is applied, i.e. after an

initial training phase relying on the provided segmentation, a second training

phase which dynamically determines the most likely segmentation is applied.

The hyperparameters of this model (i.e. the number of states per phoneme,

the number of Gaussians per state, as well as the number of Expectation-

Maximization iterations) are selected to maximize the likelihood of an held-out

validation set.

The phone models of the trained HMM are then used to build a key-

word spotting HMM, composed of two sub-models: the keyword model and

the garbage model, as illustrated on Figure 5.1. The keyword model is an

HMM, which estimates the likelihood of an acoustic sequence given that the

sequence represented the keyword phoneme sequence. The garbage model is an

HMM composed of all phoneme HMMs fully connected to each others, which

estimates the likelihood of any phoneme sequence. The overall HMM fully

connects the keyword model and the garbage model. The detection of a key-

word in a given utterance is performed by checking whether the Viterbi best

path passes through the keyword model, as explained in Section 5.1. In this

model, the keyword transition probability sets the trade-off between the true

positive rate and the ROC curve can be plotted by varying this probability.

This model is referred as HMM/Viterbi in the following. We also experiment

an alternative decoding strategy, in which the system outputs the ratio of the

likelihood of the acoustic sequence knowing the keyword is uttered versus the

likelihood of the sequence knowing the keyword is not uttered, as discussed in

Section 5.1. In this case, the first likelihood is determined by an HMM forcing

an occurence of the keyword, and the second likelihood is determined by the

garbage model, as illustrated on Figure 5.2 . This likelihood-ratio strategy is

referred as HMM/Ratio in the following.
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Table 5.1. Area Under the Curve (AUC) over the TIMIT Corpus

Model AUC

HMM/Viterbi 94.2

HMM/Ratio 95.2

Discriminative/GMM 97.1

Discriminative/Hier 99.6

The evaluation of discriminative and HMM-based models is performed over

80 keywords, randomly selected among the words occurring in the test set

of TIMIT. This random sampling of the keyword set aims at evaluating the

expected performance over any keyword. For each keyword k, we consider

a spotting problem, which consists of a set of positive utterances X+
k and a

set of negative utterance X−
k . Each positive set X+

k contains between 1 and

20 sequences, depending on the number of occurrences of k in the TIMIT

test set. Each negative set contains 20 sequences, randomly sampled among

the sequences of TIMIT that does not contain k. This setup represents an

unbalanced problem, with only 10% of the sequences being labeled as positive.

Table 5.1 reports the AUC results, averaged over the 80-word test set, for

the evaluated models. These results show the advantage of our approach. The

two HMM based solutions are outperformed by the keyword spotters relying

on our discriminative learning approach. The improvement introduced by our

discriminative training algorithm can be observed when comparing the perfor-

mance of Discriminative/GMM to the performance of the HMM spotters. In

that case, both spotters rely on GMMs to estimate the frame likelihood given a

phoneme class. In our case we use that probability to compute the φ5 feature,

while the HMM uses it as the state emission probability.

Moreover, our keyword spotter can benefit from effective non-probabilistic

frame classifiers, as illustrated with Discriminative/Hier. This model relies

on the output of a large margin frame-based classifier [Dekel et al., 2004],

which yield an additional improvement compared to Discriminative/GMM.

In order to verify whether the differences observed on averaged AUC could

be due only to a few keywords, we applied the Wilcoxon test [Rice, 1995] to

compare the results of both HMM approaches (HMM/Viterbi and HMM/Ratio)

with the results of both discriminative approaches (Discriminative/GMM and

Discriminative/Hier). At the 90% confidence level, the test rejected this

hypothesis, showing that the performance gain of the discriminative approach
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Table 5.2. Comparing Discriminative/Hier and HMM/Ratio for each keyword

over the TIMIT corpus

Best Model Keywords

HMM/Ratio materials (1 keyword)

Discriminative/Hier absolute admitted apartments apparently argued controlled depicts

dominant drunk efficient followed freedom introduced millionaires

needed obvious radiation rejected spilled street superb sympathet-

ically weekday (23 keywords)

No differences aligning anxiety bedrooms brand camera characters cleaning cli-

mates creeping crossings crushed decaying demands dressy episode

everything excellent experience family firing forgiveness fulfillment

functional grazing henceforth ignored illnesses imitate increasing

inevitable January mutineer package paramagnetic patiently pleas-

ant possessed pressure recriminations redecorating secularist sham-

pooed solid spreader story strained streamlined stripped stupid

surface swimming unenthusiastic unlined urethane usual walking

(56 keywords)

is consistent over over the keyword set.

Table 5.2 further presents the per-keyword performance and compares the

results of the best HMM configuration, HMM/Ratio to the performance of the

best discriminative configuration, Discriminative/Hier. Out of 80 keywords,

the discriminative model outperforms the HMM for 23 keywords, the HMM

outperforms our solution for 1 keyword, and both models yield the same AUC

for 56 keywords. The discriminative model seems to be especially advantageous

for short keywords, as it outperform the HMM for most of the keywords of 5

phonemes or less (e.g. drunk, spilled, street). The 56 cases without reported

differences between the models correspond to keywords which are correctly de-

tected by both models, i.e. 100% AUC. This advocates for further comparisons

over a more challenging task.

5.3.2 The WSJ Experiments

WSJ [Paul and Baker, 1992] is a large corpus of American English. It consists

in read and spontaneous speech corresponding to the reading and the dictation

of articles from the Wall Street Journal. In the following, we evaluate the mod-

els trained over the TIMIT dataset relying on the si tr s subset of WSJ. This
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Table 5.3. Area Under the Curve (AUC) over the WSJ Corpus

Model AUC

HMM/Viterbi 86.8

HMM/Ratio 88.4

Discriminative/GMM 92.2

Discriminative/Hier 91.4

set corresponds to the recordings of 200 speakers. Compared to TIMIT, this

set introduce several variations, both regarding the type of sentences recorded

and the recording conditions [Paul and Baker, 1992]. These experiments hence

evaluate the robustness of the different approaches when they encounter dif-

fering conditions for training and testing. Like for TIMIT, the evaluation is

performed over 80 keywords randomly selected from the corpus transcription.

For each keyword k, the evaluation is performed over a set X+
k , containing be-

tween 1 and 20 positive sequences, and a X−
k , containing 20 randomly selected

negative sequences. This setup also represents an unbalanced problem, with

27% of the sequences being labeled as positive.

Table 5.3 reports the AUC results, averaged over the 80-word test set, for

the evaluated models. Overall, the results of this WSJ experiments show that

the differences between the TIMIT training conditions and the WSJ testing

conditions affect the performance of all models. However, the measured per-

formance still yield acceptable performance in all cases (86.8% AUC in the

worse case). Comparing the individual model performance, the WSJ results

confirm the conclusions of TIMIT experiments and the discriminative spotters

outperform the HMM-based alternatives. For the HMM models, HMM/Ratio

outperforms HMM/Viterbi like in the TIMIT experiments. For the discrimina-

tive spotters, Discriminative/GMM outperforms Discriminative/Hier, which

was not the case over TIMIT. Since these two models only differ in the frame-

based classifier used as the 5th feature function, this result certainly indicates

that the hierarchical frame-based classifier on which Discriminative/Hier re-

lies is less robust to the acoustic condition changes than the GMM alternative.

Like for TIMIT, we checked whether the differences observed on the whole set

could be due to a few keywords. The Wilcoxon test rejected this hypothesis at

the 90% confidence level, for the 4 tests comparing Discriminative/GMM and

Discriminative/Hier to HMM/Viterbi and HMM/Hier.

We further compared the best discriminative spotter, Discriminative/GMM,
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Table 5.4. Comparing Discriminative/GMM and HMM/Ratio for each keyword

over the WSJ corpus

Best Model Keywords

HMM/Ratio artificially Colorado elements Fulton itinerary longer lunchroom

merchant mission multilateral narrowed outlets Owens piper re-

placed reward sabotaged shards spurt therefore (20 keywords)

Discriminative/Hier Adams additions Allen Amerongen apiece buses Bushby Colom-

bians consistently cracked dictate drop fantasy fills gross Higa his-

toric implied interact kings list lobby lucrative measures Melbourne

millions Munich nightly observance owning plus proudly queasy re-

gency retooling Rubin scramble Seidler serving significance slug-

gish strengthening Sutton’s tariffs Timberland today truths under-

stands withhold Witter’s (50 keywords)

No differences aftershocks Americas farms Flamson hammer homosexual philo-

sophically purchasers sinking steel-makers (10 keywords)

and the best HMM spotter HMM/Ratio over each keyword. These results are

summarized in Table 5.4. Out of the 80 keywords, the discriminative model

outperforms the HMM for 50 keywords, the HMM outperforms the discrimi-

native model for 20 keywords and both models yield the same results for 10

keywords. Like for the TIMIT experiments, our model is shown to be especially

advantageous for short keywords, with 5 phonemes or less (e.g. Adams, kings,

serving).

Overall, the experiments over both WSJ and TIMIT highlight the advantage

of our discriminative learning strategy.

5.4 Conclusions

This chapter introduced a discriminative approach to the keyword spotting

problem. In this task, the model receives a keyword and a speech recording and

should decide whether the keyword has been uttered in the recording. Keyword

spotting corresponds to an unbalanced detection problem, since, in standard

setups, most of tested utterances do not contain the targeted keyword. In

that unbalanced context, the Area Under the receiver operating Curve (AUC)

is generally used for evaluation. This work proposed a learning algorithm,

which aims at maximizing the AUC over a set of training spotting problems.
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Our strategy is based on a large margin formulation of the task, and relies on

an efficient iterative training procedure. The resulting model contrasts with

standard approaches based on Hidden Markov Models (HMMs), for which the

training procedure does not rely on a loss directly related to the spotting task.

Compared to such alternatives, our model is shown to yield significant improve-

ments over various spotting problems on the TIMIT and the WSJ corpus. For

instance, the best HMM configuration over TIMIT reaches 95.3% AUC, com-

pared to 99.6% for the best discriminative spotter.

Several potential directions of research can be identified from this work.

In its current configuration, our keyword spotter relies on the output of a

pre-trained frame-based phoneme classifier. It would be of a great interest

to learn the frame classifier and the keyword spotter jointly, so that all model

parameters are selected to maximize the performance on the final spotting task.

For that purpose, solutions based on large-margin sequence classifiers such as

[Keshet et al., 2006] or [Sha and Saul, 2007] could be investigated.

Also, our work currently represents keywords as sequence of phonemes,

without considering the neighboring context. Possible improvement might re-

sults from the use of phoneme in context, i.e. triphones. We hence plan to in-

vestigate on relying on triphones in a discriminative framework, and to compare

the resulting model to triphone-based HMMs. More generally, our model pa-

rameterization offers greater flexibility to incorporate new features, compared

to probabilistic approaches such as HMMs. Therefore, in addition to triphones,

features extracted from the speaker identity, the channel characteristics or the

linguistic context could possibly be included to improve performance.

Beyond the spotting of spoken keywords, this work might be extended to

the field of Computer Vision, where a similar word spotting problem exists. In

fact, the detection of written keywords within images is required for different

applications, such as car navigation systems, advertising survey and multimedia

indexing [Chen et al., 1995, 2004]. Of course, this vision problem is more

challenging since the search over all possible alignments should be replaced by

a search over the projections of a planar object (i.e. the surface potentially

displaying the keyword) onto the image space.

Overall, this chapter shows that tasks which have not been formalized as

ranking problems, such as keyword spotting, can benefit from recent learning

techniques developed for retrieval rankings.
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5.5 Contributions

This research on keyword spotting was performed in collaboration with

Joseph Keshet. I was initially focusing on the learning objective for AUC

maximization, while Joseph Keshet brought his expertise on sequence modeling.

The resulting ideas and work presented in this chapter can be considered as a

joint contribution. The work presented in this Chapter constitutes an extension

of the conference paper [Keshet et al., 2007a]. Based on the same learning

objective, a Neural Network for learning the inter-frame distance for template-

based keyword detection has then been proposed [Grangier and Bengio, 2007].

� J. Keshet, D. Grangier, and S. Bengio. Discriminative keyword spotting. In International

Workshop on Non-LInear Speech Processing (NOLISP), pages 47–50, Paris, France, May

2007a.

� D. Grangier and S. Bengio. Learning the inter-frame distance for discriminative

template-based keyword detection. In International Conference on Speech Processing (IN-

TERSPEECH), pages 902–905, Antwerp, Belgium, August 2007.



6 Conclusions and Perspectives

This last chapter concludes summarizes the thesis and delineates possible

future directions of research.

6.1 General Summary

Throughout this thesis, we have explored the application of machine learn-

ing techniques to the ad-hoc retrieval problem. This task, which consists in

ranking the documents of a given corpus with respect to queries, is currently

receiving a growing attention from the machine learning community, mainly

due to the growing web-search industry. Within this effort, our general goal

was to introduce discriminative approaches to address different retrieval prob-

lems. Our methodology focused on proposing scalable learning strategies to

leverage from large training sets.

The first problem that we addressed is the retrieval of text documents from

text queries. Since this task is generally addressed by ranking documents ac-

cording to their similarity to the query, we proposed a model to learn a function

measuring text similarity from data. Specifically, we proposed to leverage from

large hyperlinked corpora to infer an effective text similarity measure. Our

method assumes that documents sharing hyperlinks generally share similar

content and identifies a similarity measure agreeing with this assumption. Our

model parameterization learns the term weighting function for bag-of-word vec-

tor with a neural network. The network is trained from the document proximity

properties conveyed by the hyperlinks. In a transfer learning setup, we applied

the learned similarity measure to the targeted text retrieval application and

we observed that the hyperlinked training data yield significant performance

improvements, compared to standard term weighting strategies. This research
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has been published in [Grangier and Bengio, 2005a] and [Grangier and Bengio,

2005b].

The next work addressed the task of image retrieval from text queries. Our

objective was to propose a discriminative model for this task. For that purpose,

we introduced a learning procedure optimizing a criterion related to the ranking

performance over a set of training queries and images. Our learning approach

builds upon recent work on the online learning of kernel-based classifiers. This

results in an efficient, scalable algorithm, which can benefit from recent kernels

developed for image comparison. Our method contrasts with state-of-the-art

approaches that mostly rely on generative annotation models which learns a

joint distribution over text and visual features through likelihood maximization.

Compared to such models, we showed that our method offers both greater

scalability and higher performance over benchmark data. Different aspects of

this work have been published separately [Grangier et al., 2006a,b; Grangier

and Bengio, 2006, 2008].

In a third part of the thesis, we addressed the task of keyword spotting,

i.e. the detection of keywords in speech utterances. Although keyword spot-

ting is not formally a ranking problem, we proposed to use a ranking objective

on this task. This objective is similar to the one used in our image retrieval

work and states that, when ordering speech utterances according to the spot-

ter confidence, the utterances containing the keyword should appear above the

others. Interestingly, this formulation of the problem actually yields a large

margin model optimizing the area under the receiver operating curve, the most

common measure used to evaluate keyword spotters. From a performance per-

� D. Grangier and S. Bengio. Inferring document similarity from hyperlinks. In ACM

Conference on Information and Knowledge Management (CIKM), pages 359–360, Bremen,

Germany, November 2005a.

� D. Grangier and S. Bengio. Exploiting hyperlinks to learn a retrieval model. In NIPS

Workshop on Learning to Rank, pages 12–17, Whistler, Canada, December 2005b.

� D. Grangier, F. Monay, and S. Bengio. Learning to retrieve images from text queries

with a discriminative model. In International Workshop on Adaptive Multimedia Retrieval

(AMR), pages 42–56, Geneva, Switzerland, July 2006a.

� D. Grangier, F. Monay, and S. Bengio. A discriminative approach for the retrieval of

images from text queries. In European Conference on Machine Learning (ECML), pages

162–173, Berlin, Germany, September 2006b.

� D. Grangier and S. Bengio. A neural network to retrieve images from text queries. In

International Conference on Artificial Neural Networks (ICANN), volume 2, pages 24–34,

Athens, Greece, September 2006.

� D. Grangier and S. Bengio. A discriminative kernel-based model to rank images from

text queries. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI).,

2008. (in press).
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spective, the proposed model has shown to be effective compared to generative

alternatives based on Hidden-Markov Models. This work has resulted in the

following publications, [Keshet et al., 2007a; Grangier and Bengio, 2007].

Over this different retrieval applications, we have illustrated the advantage

of relying on learning objectives closely related to the final task. The different

proposed models have shown significant performance gains, compared to ap-

proaches relying on intermediate goals. This work also advocates for the use of

simple, efficient learning algorithms that can leverage from large training sets,

since, in machine learning, “nothing is as valuable as data, except maybe more

data”. Of course, this thesis is only a glimpse into the potential applications of

machine learning to retrieval problems. In the following, we outline potential

directions of research that our work could initiate.

6.2 Potential Future Work

Several possible directions of research arise from this thesis. In the following,

we describe the ones we consider the most promising.

Our work on text retrieval focused on a transfer learning setup and pro-

posed to build a better measure of text similarity from the semantic proximity

information conveyed by hyperlinks. Of course, hyperlinks are not the only

source of such information. In the recent years, approaches to exploit the rela-

tionships between translations of the same document [Vinokourov et al., 2003],

or between the successive paragraphs of a text [Keller and Bengio, 2006] have

been proposed. Building upon this research, it would be of a great interest to

introduce a learning algorithm that could leverage from all these sources in a

single unified framework.

Another interesting aspect deserving further investigations is user-feedback

and personalization. The interactions of the users with a retrieval system pro-

vides valuable data to improve the ranker and to adapt it to different kinds

of user profiles. The online algorithms proposed in this thesis are especially

adapted for this truly online setup. Of course, online adaptation presents chal-

lenging problems, since user feedback is typically noisy and biased towards the

existing ranker. A possible solution to overcome such difficulties could rely on

� J. Keshet, D. Grangier, and S. Bengio. Discriminative keyword spotting. In International

Workshop on Non-LInear Speech Processing (NOLISP), pages 47–50, Paris, France, May

2007a.

� D. Grangier and S. Bengio. Learning the inter-frame distance for discriminative

template-based keyword detection. In International Conference on Speech Processing (IN-

TERSPEECH), pages 902–905, Antwerp, Belgium, August 2007.
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techniques developed for reinforcement learning [Sutton and Barto, 1998], as

this field always deals with such a bias.

Throughout this thesis, our approach to the ranking problem focused on the

pairwise loss, stating that the score of the ranking function should be higher for

relevant items than for non-relevant ones. Other loss functions have been pro-

posed to account for gradual relevance levels and to emphasize the top position

of the ranking [Jarvelin and Kekalainen, 2000]. These functions are of a great

interest for applications such as web search, where the very first positions are

of crucial importance. The optimization of such losses is typically more costly

than the pairwise loss, since their gradient cannot be computed without rank-

ing all the corpus documents [Burges et al., 2006; Joachims, 2005]. In order to

derive efficient online learning strategies for minimizing these losses, it would be

necessary to investigate on approximations or bounds which can be computed

from only a small fraction of the corpus documents. Such approximations or

bounds would actually represent a great advance towards the use of machine

learning as the main tool to identifying effective rankers for large scale datasets.

Generally, the growing interest of the machine learning community for re-

trieval applications opens promising perspectives for many further research

opportunities. Moreover, the web search industry is currently radically trans-

forming the retrieval field, providing a seemingly unlimited source of data.

Unlimited ? It is worth remembering when machine learning dissertation used

to define the objective of this field as “identifying an effective function from

limited training data”, see Chapter 1...
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A.1 Regularization in Passive-Aggressive through Early Stopping

This appendix shows that an upper bound on the norm ‖wi‖ grows with

the number of iterations i of the Passive-Aggressive algorithm, described in

Chapter 4, Section 4.2.4. Precisely, it shows that ‖wi‖ ≤ 2 c ρ i, where ρ

corresponds to the radius of the training data ρ = max(q,p)∈Dtrain
γ(q, p).

The proof, inspired from [Collobert and Bengio, 2004], is conducted by

induction over the iteration i. At the first iteration, the property is satisfied,

since w0 = 0. The update rule of wt also preserves the property. If we assume

the property to be verified at iteration i − 1, i.e. ‖wi−1‖ ≤ 2 c ρ (i− 1), we

have ‖wi‖ ≤ 2 c ρ (i− 1) + ‖τiv
i‖, according to the update rule (4.10). By

definition, τi is positive and smaller than c and hence ‖wi‖ ≤ 2 c ρ (i−1)+c‖vi‖.
Furthermore, vi is defined as γ(qi, pi+)− γ(qi, pi−), which implies that ‖vi‖ ≤
2ρ. Consequently, ‖wi‖ ≤ 2 c ρ i. This concludes the proof.

A.2 Dynamic Programming Procedure for the Discriminative Spotter

In this appendix, we present a reccursive procedure to efficiently com-

pute the confidence score of our keyword spotter described in Chapter 5, Sec-

tion 5.2.3, i.e.

fw(x, pk) = max
s

w · φ(x, pk, s). (A.1)

This procedure relies on dynamic programming, similarly to Viterbi decoding

for Hidden Markov Models. To introduce our approach, we first require a

few definitions. For all i and any si−1 < si < si+1, we introduce the vector

h(i; si−1, si, si+1) of R7 in which each component is defined as

∀j = 1, 2, 3, 4, hi
j(i; si−1, si, si+1) =

1
L

d(xsi−j , xsi+j),
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and

h5(i; si−1, si, si+1) =
1
L

si+1−1∑
j=si

1
si+1 − si

g(xj , pi),

h6(i; si−1, si, si+1) =
1
L

logN (si+1 − si; µpi , σpi),

h7(i; si−1, si, si+1) =

{
0 if i = 1,
1
L (ri − ri−1)2 otherwise.

where ri = si+1−si

µpi
. According to the definition of φ, we have

∀s, φ(x, pk, s) =
L∑

i=1

h(i; si−1, si, si+1). (A.2)

We further introduce,

∀l > 1, H(l; s1, sl, sl+1) = max
s2,...,sl−1

l∑
i=1

w · h(i; si−1, si, si+1).

We can notice that, according to Equation (A.1) and Equation (A.2),

fw(x, pk) = max
s1,sL,sL+1

H(L; s1, sL, sL+1) (A.3)

We can now introduce the core of our recursive algorithm: for any l > 2,

H(l; s1, sl, sl+1)

= max
sl−1

{
max

s2,...,sl−2

l∑
i=1

w · h(i; si−1, si, si+1)

}

= max
sl−1

{
max

s2,...,sl−2

{
l−1∑
i=1

w · h(i; si−1, si, si+1)

}
+ w · h(l; sl−1, sl, sl+1)

}
= max

sl−1
{H(l − 1; s1, sl−1, sl) + w · h(l; sl−1, sl, sl+1)}

This reccursion suggests Algorithm A.1 for solving the maximization in Equa-

tion (A.1). In this algorithm, we introduce range lists, which allows to simplify

the notation for iteration indexes. These ranges are computed from |x| the

acoustic sequence length, L the number of phoneme in the targeted keyword,

minp the minimum allowed duration for a phoneme and maxp the minimum

allowed duration for a phoneme. rangestart denotes the allowed start points of

the first phoneme, between 1 and |x| − Lminp + 1, where Lminp corresponds

to the minimum keyword duration. range(si) denotes the allowed end points

for a phoneme started at si, between si + minp and si + maxp.
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Algorithm A.1: Dynamic Programming Procedure
Input: acoustic sequence x and keyword phoneme sequence p

Step 1. Precomputation of H for the whole sequence.

foreach s1 ∈ rangestart do

foreach s2 ∈ range(s1) do

H(1; s1, s1, s2) = w · h(i; s0, s1, s2)
end

foreach i ∈ {2, . . . , L} do

foreach si ∈ range(si−1) do

foreach si+1 ∈ range(si) do

H(i; s1, si, si+1) =

maxsi−1 {H(i− 1; s1, si−1, si) + w · h(i; si−1, si, si+1)}
end

end
end

end

Step 2. Compute fw(x, pk) from Equation (A.3).

Output: confidence score fw(x, pk)

The complexity of this algorithm is dominated by Step 1, and, more specif-

ically, by the most inner loop of step 1. Its complexity is O(|x| L d3), where

d refers to maxp − minp + 1. This complexity is the product of the number

of iterations of the loop over s1, i, si and si+1, multiplied by the cost of the

maximization over si−1.
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