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Abstract

Large neural networks pretrained on web-scale corpora are central to modern machine learn-
ing. In this paradigm, the distribution of the large, heterogeneous pretraining data rarely
matches that of the application domain. This work considers modifying the pretraining
distribution in the case where one has a small sample of data reflecting the targeted test
conditions. We propose an algorithm motivated by a recent formulation of this setting as
an online, bilevel optimization problem. With scalability in mind, our algorithm prioritizes
computing gradients at training points which are likely to most improve the loss on the
targeted distribution. Empirically, we show that in some cases this approach is beneficial
over existing strategies from the domain adaptation literature but may not succeed in other
cases. We propose a simple test to evaluate when our approach can be expected to work
well and point towards further research to address current limitations.

1 Introduction

Large models pretrained on massive, heterogeneous datasets have impacted various application do-
mains (Bommasani et al., 2021), including natural language processing (Devlin et al., 2019), computer
vision (Mahajan et al., 2018), and audio processing (Schneider et al., 2019). These models are typically
trained on two different distributions: a generic distribution for pretraining and a specific distribution for
fine tuning. Only the specific distribution matches the test conditions while the generic distribution offers
an abundant source of data with some similarities to the specific data. This novel paradigm builds upon
earlier work in multitask learning (Caruana, 1997), transfer learning (Bennett et al., 2003), and domain
adaptation (Moore & Lewis, 2010). For all of these methods, the accuracy of a model on the specific task
heavily depends on selecting an appropriate distribution over the generic auxiliary tasks and data.

This work proposes a scalable online strategy for data selection along with a comprehensive and realistic
empirical study1. We build upon a bilevel formulation of the generic re-weighting problem which allows for
gradient-based optimization (Franceschi et al., 2018).

Contributions First, we unify several gradient-based data selection methods into a common framework in
which their similarities and distinctions are more easily understood. Second, we introduce a scalable, online
algorithm. This algorithm can train a large model while updating an inexpensive auxiliary data selection
model which tracks the distribution required to make fast progress on the targeted task. Our algorithm
leverages the asymmetry in computational cost between the selection model and the large model by filtering
examples on the fly, ensuring that the majority of examples are not examined by the large model. This
allows for much faster training on the specific distribution than pre-training on the generic distribution only.

Third, we perform a comprehensive and realistic empirical comparison of data selection strategies. We
compare several alternative strategies across different tasks and modalities including large scale language

1Code to reproduce our experiments is at https://github.com/apple/ml-bilevel-train-dist
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modeling, machine translation, and image classification. Finally, we propose a simple metric based on
gradient alignment that correlates with the success and failure of gradient-based data selection methods.

2 Related Work

Prior work has proposed automatic methods to adjust the generic training distribution in order to improve
model generalization on the specific task. The domain adaptation literature has explored variants of impor-
tance sampling, which uses importance weights to emphasize or select some generic examples. These weights
have been determined via domain classifiers (Aharoni & Goldberg, 2020; Gururangan et al., 2020), via the
estimation of the label distribution (Ngiam et al., 2018), or via gradient alignment and fine-tuning.

Contrastive Data Selection, CDS (Moore & Lewis, 2010; van der Wees et al., 2017; Wang et al., 2018) falls into
this later category. This method has four phases: (i) an initial model is pre-trained on the generic dataset,
(ii) this model is fine tuned on the specific data, (iii) the generic set is restricted to the generic data whose
loss improvement between the pre-trained model (i) and the fine tuned model (ii) is the greatest. Finally,
(iv) the training of the pre-trained model (i) is resumed on the selected data from stage (iii). Although
CDS is a generic method applicable to any training objective, it enjoys additional properties when applied
to generative models trained to maximize the (conditional) training likelihood. It can both be considered an
importance sampling method and an influence function based selection method (Grangier & Iter, 2022).

Huang et al. (2006) cast weights estimation as a quadratic problem with a kernel function. Related to domain
adaptation, the removal of label noise in the generic distribution has received attention with methods based
on influence functions (Koh & Liang, 2017; Pruthi et al., 2020; Schioppa et al., 2022), data models (Ilyas
et al., 2022; Jain et al., 2022), and data Shapley values (Ghorbani & Zou, 2019; Karlaš et al., 2022).

As an alternative to static weighting, the literature also explored dynamic weighting where the distribution
over generic examples is adapted during training. The two primary strategies are reinforcement learning and
direct optimization. Reinforcement learning does not assume that the specific task loss can be differentiated
with respect to the weighting parameters. Instead, a parameterized model of the generic distribution is
adjusted through reinforcement learning: the current model proposes generic distributions, and their reward
is measured as the specific loss after a few steps of generic training over a proposal distribution (Kumar et al.,
2019; Yoon et al., 2020; Zhu et al., 2020). On the other hand, direct optimization assumes a differentiable
functional dependency between the weighting parameters and the specific training loss. This dependency
can be derived through meta learning by unfolding the generic update (Ren et al., 2018; Hu et al., 2019; Shu
et al., 2019; Zhang & Pfister, 2021): one gradient update step minimizing the weighted generic loss depends
on the weighting parameters. The impact of this update can be evaluated by computing the post-update
specific loss which can then be differentiated with respect to the weighting parameters. As an alternative
to update unfolding, a bilevel formulation of the reweighting problem also allows for direct optimization
(Franceschi et al., 2018). Our work builds upon this bilevel formulation.

Other research areas intersect with sample reweighting. Ho et al. (2019); Lim et al. (2019); Zoph et al. (2020)
considered learning a distribution over training data augmentations. Curriculum learning visits successive
training distributions based on training instance difficulty (Bengio et al., 2009; Kumar et al., 2010; Jiang
et al., 2018; Saxena et al., 2019). Multi-task learning research has considered gradient projection to minimize
negative interactions between tasks (Yu et al., 2020; Dery et al., 2020; Liu et al., 2021). Importance sampling
for accelerated stochastic training (Zhao & Zhang, 2015; Katharopoulos & Fleuret, 2018) is also relevant.

3 Problem Setting

Classical machine learning assumes that the model is trained on data drawn from the distribution from which
the test data will also be sampled from (Vapnik, 1999). Our setting is different and belongs to the field of
transfer learning (Caruana, 1993; Thrun & Pratt, 1998). We are given two training sets, a large generic
training set Dgeneric and small specific training set Dspecific. Only the latter set is representative of the test
conditions. The large generic set can be leveraged as it might contain information related to the targeted
specific. Its large scale allows more reliable statistical estimation and allows training higher capacity models.
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Domain adaptation (Farahani et al., 2021), multi-task learning (Caruana, 1993), fine-tuning (Denevi et al.,
2018) are transfer learning setups related to our setting, see Appendix A for a discussion on the relevant
terminology. Importantly, we assume that the targeted task is known at the beginning of learning (which is
not a necessity for fine tuning) and that only the specific task accuracy matters (unlike multi-task learning,
which might also target high generic accuracy). While our main focus is targeting a single specific task, we
discuss the case where the specific loss is a mixture over multiple targeted specific tasks in Appendix B.

Optimization-based Filtering. Large language and vision models have been shown to perform well on
a wide range of test distributions. This stems from two combined causes: (i) a diverse training set which
is a mixture over many domains and (ii) large capacity to fit each domain in the mixture. Therefore,
there is an inherent tradeoff between capacity and generality. When one knows the application domain in
advance, fitting a large web corpus without data selection will waste capacity on train examples far from the
targeted domain. Ad-hoc selection techniques are commonplace for that purpose (filtering of captions by
confidence in LAION, books are all you need for QA (Gunasekar et al., 2023), etc...). Our goal is to explore
optimization-based techniques to complement widely used application-specific filtering techniques.

4 Methods

We aim to identify the parameters ¹ of a model that achieves good generalization performance (held-out
likelihood) over the specific distribution. We are given a large generic training set Dgeneric and small specific
training set Dspecific. We cast the generic training problem as the minimization of the weighted loss

Lgeneric(¹, ³) =
∑

x∈Dgeneric

w(x; ³)ℓ(x; ¹)

where w(x; ³) denotes a smaller, secondary weighting neural network which defines a distribution over
Dgeneric, i.e. ∀x, w(x; ³) > 0 and

∑

x∈Dgeneric
w(x; ³) = 1. The weighting network is parameterized by

the parameters ³. We propose to use a weighting network that is much smaller than the main model, so the
dimension of ³ is typically smaller than that of ¹. We denote the solution to generic training problem as

¹∗(³) ∈ arg min
θ

Lgeneric(¹, ³) (1)

which depends on the weighting networks’ parameters ³. Our goal is to find the parameter of the weighting
network such that the loss on the specific training set is minimal, i.e. minimizing,

Lspecific(¹∗(³)) :=
∑

x′∈Dspecific

ℓ(x′; ¹∗(³)). (2)

with respect to ³, where the samples x′ come from the specific training set.

4.1 Data Selection as a Bilevel Optimization Problem

The previous equations make it clear that finding the optimal weighting network is a bilevel optimization
problem: with a fixed weighting network, the optimal parameters for the main model are found by minimizing
the weighted loss over the generic dataset, Lgeneric (Equation 1). The optimal main model parameters ¹∗

depends explicitly on the weighting network parameters ³: changing ³ changes the optimization problem
in Equation 1 and its solution. The selection of ³ is driven by the specific set loss, Lspecific(Equation 2).

Equation 1 and Equation 2 form a bilevel optimization problem (Franceschi et al., 2018): the outer problem
(Equation 2) depends implicitly on ³ through the solution to the inner problem (1). One of the strengths
of such a bilevel formulation is that the weighting network must adapt to the main model: the question
is to learn a weighting network such that the main model trained with that network leads to good specific
performance. This has the potential to go beyond a simple model-agnostic scheme that would, for instance,
build w(x) based on the similarity between x and the specific set. While a large body of the literature is
devoted to solving bilevel problems where the inner problem Equation 1 is convex in ¹ (Ghadimi & Wang,

3



Published in Transactions on Machine Learning Research (10/2024)

2018; Arbel & Mairal, 2021), in our case, Equation 1 corresponds to the training problem of a neural network
which is non-convex. This leads to several difficulties:

i) The arg min in Equation 1 is not a single element since there are multiple minimizers. Therefore, the
function ¹∗(³) is not properly defined.

ii) In order to use gradient-based methods to find the optimal ³, we have to compute the approximate
Jacobian of ¹∗(³). This is usually done using the implicit function theorem, which only applies when the
loss function in equation 1 is locally convex and such property is hard to check in practice.

Furthermore, we want a method with a computational cost similar to the standard training of the main
model. In other words, we have enough budget to solve Equation 1 only once: learning ³ and ¹ must be
carried out synchronously. This has an important consequence: the bilevel methods that we study update
³ based on the current main model state ¹ and not on the optimal solution ¹∗(³). Hence, this is a slight
deviation from the bilevel formalism. This also means that the weighting network adapts to the current
state of the main model and, ideally, tries to up-weight generic data that is useful at the current state of
learning. We explore online algorithms to solve the bilevel problem when the main model is large. These
algorithms alternate ¹ and ³ updates and leverage the asymmetry in computation cost between evaluating
the large main model and the small auxiliary weighting network.

Algorithm 1 Scalable, Online Bilevel Data Selection

Require: Dgeneric,Dspecific, bsmall, blarge ▷ Training datasets, batch sizes.
¹0 ← main_model_initializer()
³0 ← weight_model_initializer()
for t = 1, . . . , T do

▷ Sample generic and specific batch.
Bgeneric ← sample(Dgeneric, blarge)

Bspecific ← sample(Dspecific, bsmall)

▷ Sample generic sub-batches.
Bfiltered ← filter(Bgeneric, ³t−1, bsmall)
B′

generic ← sample(Bgeneric, bsmall)

▷ Inner and outer updates.
¹t ← update_main_model(Bfiltered, ¹t−1)
³t ← update_weight_model(B′

generic, Bspecific, ¹t, ³t−1)
end for
return ¹T ▷ Trained main model.

4.2 Updating the main model

To update the main model, we fix ³ and do a step to minimize Equation 1. A first, natural idea
would be to take a mini-batch of generic data Bgeneric of size b, compute the corresponding gradient
g = 1

b

∑

x∈Bgeneric
w(x; ³)∇θℓ(x; ¹) and then use it to update ¹, either implementing SGD by doing

¹ ← ¹ − ¸ × g with ¸ > 0 a learning rate, or by using it into a more involved optimizer like Adam.
However, the computation of g with the previous equation can be wasteful when a significant fraction of the
examples of Bgeneric are assigned small weights w(x; ³). These examples do not contribute much to g while
still requiring the expensive computation of their gradient ∇θℓ(x; ¹).

To accelerate the optimization of ¹, we leverage the asymmetry between the cost of evaluating the weighting
network and the main model: computing w(x; ³) only requires inference of a small network while computing
∇ℓ(x; ¹) requires inference and back-propagation through a large network. We start by sampling a large

batch B
big
generic from the generic dataset and compute w(x; ³) for each x in B

big
generic. From there we can take

a smaller batch Bsmall
generic from B

big
generic, either by sampling from the distribution defined by w(x; ³) or by

taking the examples with the highest w(x; ³). The first option is an unbiased solution corresponding to
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importance sampling, while the second option is biased but observed to work better in practice. In both
cases, we compute the gradient to update ¹ with uniform weights, using g = 1

b

∑

x∈Bsmall
generic

∇θℓ(x; ¹).

This proposed training method is sparse: the samples in B
big
generic have a sparse weight, only a fraction of

them is non-zero. In the experiments, we prefix all methods that use this strategy with the sparse adjective.

4.3 Updating the weighting model

With scalability in mind, we only consider stochastic methods, i.e., that update the weighting network
parameters ³ using only a mini-batch of specific data Bspecific and a mini-batch of generic data Bgeneric. We
consider three alternatives to update the weighting model.

Before describing alternative methods to update ³, we summarize our approach in Algorithm 1. We denote
sample(D, n) the set resulting from sampling n times uniformly from a set D. We denote filter(D, ³, n) the
result from either (a) sampling n times from D i.i.d relying on the distribution induced by the weighting
model at ³, or (b) selecting the top-n highest weighted examples from D. The batch sizes bsmall, blarge are
hyper-parameters selected through validation.

4.3.1 One gradient step unrolling - differentiable data selection (DDS)

This method updates the weighting network by doing a descent step on the loss

L(³) =
∑

x′∈Bspecific

ℓ′(x′; u(¹, ³)) with u(¹; ³) = ¹ − Ä×
∑

x∈Bgeneric

w(x; ³)∇θℓ(x; ¹), (3)

which corresponds to the value of the specific loss on the mini-batch Bspecific after a gradient descent step
for ¹ on the generic mini-batch Bgeneric using the current weights. It is similar to (Wang et al., 2020). The
idea behind this method is that u(¹, ³) is a reasonable approximation to ¹∗(³). This method requires back-
propagating through a gradient descent step, which requires only a little overhead compared to a standard
gradient computation. In the limit where the step size Ä in the gradient update u(¹, ³) goes to 0, we see that
L(³) ≃ Äïgspecific, ggenericð, with gspecific =

∑

x′∈Bspecific
∇ℓ′(x′; ¹) and ggeneric =

∑

x∈Bgeneric
w(x; ³)∇ℓ(x, ¹).

Hence, the loss L approximately measures the alignment between specific and generic gradients. Taking
derivatives gives ∇L(³) ≃ Ä

∑

x∈Bgeneric
ïgspecific,∇ℓ(x, ¹)ð∇w(x; ³).

4.3.2 Stochastic Bilevel Algorithm (SOBA)

We also implement the SOBA method of (Dagréou et al., 2022), which is a scalable method to solve the bilevel
problem, developed in a setting where the inner function (Equation 1) is convex. This algorithm approx-
imates a gradient descent on h(³) = Lspecific(¹∗(³)). The chain rule gives ∇h(³) = ∂θ

∗

∂α
∇Lspecific(¹∗(³)).

The optimum ¹∗(³) satisfies the first order condition ∇θLgeneric(¹∗(³), ³) = 0. Under the assumption
that the Hessian ∇2

θθ
Lgeneric(¹∗(³), ³) is invertible, the implicit function theorem applied to the previ-

ous equation gives ∂θ
∗

∂α
= −∇2

αθ
Lgeneric(¹∗(³), ³)

[

∇2
θθ
Lgeneric(¹∗(³), ³)

]−1
, which overall yields ∇h(³) =

−∇2
αθ
Lgeneric(¹∗(³), ³)

[

∇2
θθ
Lgeneric(¹∗(³), ³)

]−1
∇Lspecific(¹∗(³)). SOBA approximates this quantity in

two ways: first, ¹∗(³) is replaced by the current iterate ¹ in the above gradient. Second, in addition
to ¹ and ³, SOBA has an additional variable v of the same size as ¹ that keeps track of the quantity

−
[

∇2
θθ
Lgeneric(¹, ³)

]−1
∇θLspecific(¹). This is done using the stochastic iterations v ← v − ¸ × dv with

dv =
∑

x∈Bgeneric
w(x; ³)∇2ℓ(x; ¹)v +

∑

x′∈Bspecific
∇ℓ′(x′; ¹). The first part in dv is a Hessian-vector prod-

uct that can be computed efficiently at a cost similar to that of a gradient (Pearlmutter, 1994). Then,
the parameters ³ are moved in the direction d³ =

∑

x∈Bgeneric
ï∇ℓ(x; ¹), vð∇w(x; ³), which is a stochastic

approximation of ∇2
αθ
Lgeneric(¹, ³)v, which is itself an approximation of ∇h(³).

4.3.3 Aligned NOrmalized GRADient (Anograd)

We derive Anograd (Aligned NOrmalized GRADient) as a variant of DDS which relies on steepest de-
scent (Boyd & Vandenberghe, 2004). We apply the steepest descent algorithm to the specific loss
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¹ → Lspecific(¹). We recall that the steepest normalised descent direction according to the Euclidean norm
∥ · ∥ for the specific loss is

∆¹nsd = arg min
v
{v¦∇θLspecific(¹) : ∥v∥ = 1} (4)

This direction aligns with the opposite gradient when v is not further constrained. In our case, ¹ updates
should correspond to gradient descent updates on the weighted generic loss. We therefore constraints ¹

updates to decompose as an afine combination of individual generic example gradients, i.e.
∑ng

i=1 ai∇ℓ(xg
i
, ¹)

where Dgeneric is denoted as {xg
i
}

ng

i=1 and ai > 0,∀i. Therefore, we need to solve Equation 4 with the
constraint v ∈ V, with V =

{
∑ng

i=1 ai∇ℓ(xg
i
, ¹),∀ai g 0

}

. This amounts to solving

min
a

( ∑ng

i=1 ai∇ℓ(xg
i
, ¹)

∥
∑ng

i=1 ai∇ℓ(xg
i
, ¹))∥

)¦

∇θLspecific(¹)

which itself is equivalent to solve mina cosine
(
∑ng

i=1 ai∇ℓ(xg
i
, ¹), ∇θLspecific(¹)

)

We now param-
eterize a as the output of the weighting network and introduce the loss, Lanograd(¹, ³) =
cosine (∇θLgeneric(¹, ³), ∇θLspecific(¹)) . The anograd method performs gradient descent on that loss to up-
date ³. Like for DDS and Soba, we perform a single step before updating ¹. For scalability we rely on
stochastic (batch) estimates for both both terms in the cosine. Compared to DDS, the normalization in
anograd reduces the benefit of up-weighting generic examples with high gradient norm.

5 Experiments & Results

Our experiments focus on three application domains: language modeling, machine translation and image
classification. Before introducing our experimental setup and discussing our results on each domain, we
describe the baselines we considered.

5.1 Evaluated Alternative Methods

For our empirical comparison, we first consider two common, simple methods which do not rely on data
selection. We call baseline pretraining on the generic training set followed by fine tuning on the specific
set. We call mixing pretraining on a mix of generic and specific data. Each training batch contains a fixed
fraction of specific data. This fraction is selected by validation.

Our first baseline is contrastive data selection, CDS, as described in section 2. As we do for all data selection
method, we consider further fine tuning the final CDS model on the specific training set.

We also consider a domain classifier. In that case, a simple model is pretrained on a binary classification
problem to distinguish between generic and specific training examples. The model has the same architecture
as the weighting model we use with bilevel methods and it minimizes the binary cross entropy on batches
with the same proportion of specific and generic data. This model can estimate the probability that an
example belongs to the specific set and is applied to restrict the generic set to the data with the highest
estimates. We can train a model on this restricted set and later fine tuning on the specific data.

Closer to our bilevel selection methods, we evaluate learning to re-weight, LTR (Ren et al., 2018) and
meta-weight net (Shu et al., 2019)). Learning to re-weight is similar to the DDS approach we presented in
Section 4 except it does not maintain a weighting model. Instead, at each step, the model considers a uniform
distribution over the generic batch. It then computes the gradient of this flat weighting as free parameters
with the outer update, Equation 2. This single step updates from uniform is then used to reweight the
generic loss and update the main model, Equation 1. Compared to our work, this method does not persist
a weighting model across steps and does not allow learning complex distributions. The lack of weighting
model is also less efficient since a generic example x cannot be discarded without evaluating the main model
and its gradient at x.

Meta-weight net is a particular, simple case of DDS in which the weight model takes as input a single scalar
for each example: the example loss, i.e. w(x; ³) = mlp(ℓ(x; ¹); ³). This parameterization is sensible for some
applications, e.g. loss based up-weighting is a common approach for active learning in classification problems
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Table 1: Model architectures
Language Model
Main model: Transformer decoder with 12 layers, 8 attention heads, residual dimension of 256, feed-
forward latent dimension of 1,024.
Weight model: Convolutional network with 2 layers followed by mean pooling, latent dimension of 128.

Translation Model
Main model: Transformer with 6 encoder layers and 6 decoder layers, 16 attention heads, residual
dimension of 1,024, feed-forward latent dimension of 4,096.
Weight model: Embedding layer of dimension 32 followed by an MLP with a latent dimension of 128.

Image Classifier
Main model: Dual encoder clip model with ResNet 50 for images (224x224) and an multi-layer percep-
tron (2 latent layers with dim. 768) on top of sentence BERT for text.
Weight model: Convolutional network over 32x32 images with 4 layers of dimension 32, 32, 32 and 64.

with little intrinsic uncertainty (Settles, 2009). Loss values can be indicative of an example difficulty and
loss based up-weighting might accelerate learning. However, an example loss seems to be orthogonal to the
example value for domain transfer.

5.2 Language Modeling

Our language modeling (LM) experiments relies on two datasets, the C4 dataset (Raffel et al., 2019) is used
as the generic set and the RCV1 (Lewis et al., 2004) dataset is used as the specific set. C4 is a dataset
of English language web pages from common crawl (Patel, 2020), while RCV1 consists of newswire stories
from Reuters. This setup is representative of a generic large corpus spanning different types of examples
(c4) while the specific task contains an homogeneous set of examples from the same domain and from the
same source (RCV1). In our setup, we use 30m examples from C4 and 10k examples from RCV1.

Method Pre-train Fine-tune

Baseline 1.198 ± 0.003 0.864 ± 0.002
Mixing 0.861 ± 0.002 0.847 ± 0.002
CDS 1.067 ± 0.005 0.867 ± 0.002
Domain classif. 1.098 ± 0.002 0.894 ± 0.003
MetaWeightNet 1.212 ± 0.004 0.868 ± 0.003
LTR 1.156 ± 0.002 0.879 ± 0.002
Sparse DDS 1.039 ± 0.004 2 0.824 ± 0.003
Sparse Anograd 1.034 ± 0.002 2 0.824 ± 0.002
Sparse SOBA 1.019 ± 0.003 1 0.820 ± 0.002

Table 2: Language modeling: Log-perplexity (negative log-
likelihood per byte) on specific (Reuters). Circled num-
bers indicate the best results. Numbers after the ± are the
standard deviation between 5 runs. The adjective sparse
refers to methods that use the sparse batch trick described
in Sec. 4.2.

Our language model is a byte-level language
model based on the transformer decoder archi-
tecture (Vaswani et al., 2017). Although sub-
word language models are more common than
byte-level ones (Sennrich et al., 2016; Al-Rfou
et al., 2019), we rely on bytes to avoid our out-
of-domain generalization results to be contam-
inated by the mismatch between the evalua-
tion data and the tokenizer training data (Rust
et al., 2021). The weighting network is a small
convolutional network. Table 1 gives archi-
tectural details. We also use the same archi-
tecture for the domain classifier baseline. We
report performance in terms of log-perplexity,
i.e. negative log likelihood. Our implementa-
tion is derived from the language model of the
Flax library (Heek et al., 2020).

Table 2 reports the results of our language
modeling experiments. In general, domain

adaptation is beneficial in our setting. The only method trained exclusively on c4 (baseline without fine-
tuning) is much worse than all alternatives except for MetaWeightNet. Before pretraining, mixing is the
only method which directly applies updates from the specific training data and it performs best. The other
methods only emphasize part of the generic set without applying specific updates during pretraining. This
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Table 3: Language modeling: Log-perplexity on specific for Pile domains.

Method arxiv europarl freelaw gutenb. opensub. openweb. pmed abs stackex. wikipedia

Base 1.438 2.219 1.555 1.365 1.277 1.220 1.088 1.313 1.103
+ ft. 0.898 0.993 0.603 0.488 1.058 1.180 0.870 1.039 0.877
Mixing 0.909 1.019 0.606 0.487 1.067 1.153 0.874 1.049 0.874
+ ft. 0.899 1.081 0.600 0.478 1.059 1.156 0.860 1.042 0.865
CDS 1.216 1.981 1.284 1.253 1.193 1.154 0.829 1.100 0.944
+ ft. 1 0.861 0.977 0.614 0.482 2 1.039 3 1.131 0.791 1 0.971 3 0.823
Classifier 1.293 1.608 1.133 1.202 1.266 1.139 0.787 1.159 0.914
+ ft. 0.920 2 0.892 3 0.582 0.481 1.066 1 1.125 1 0.765 0.998 2 0.807
S. DDS 1.231 1.868 1.184 1.285 1.288 1.290 0.828 1.112 0.988
+ ft. 2 0.867 0.948 0.580 1 0.477 1.104 1.262 0.792 2 0.977 0.839
S.Anograd 1.219 1.659 1.237 1.274 1.193 1.150 0.814 1.132 0.989
+ ft. 3 0.871 3 0.895 2 0.580 1 0.477 3 1.042 1.133 3 0.784 0.988 0.838
S. SOBA 1.210 1.582 1.124 1.296 1.184 1.149 0.803 1.134 0.908
+ ft. 0.872 1 0.883 1 0.579 2 0.480 1 1.035 2 1.128 2 0.779 3 0.989 1 0.803

emphasis already show a benefit at pretraining time. More importantly, this benefit is complementary to
fine tuning (Iter & Grangier, 2021) and these methods yield better results that mixing+fine-tuning. Among
them, bilevel methods perform best, with SOBA giving the highest held-out specific likelihood.

We perform additional language modeling experiments with different domains. We take 9 domains from (Gao
et al., 2021) and rely on 10k specific document for each domain. The generic set (c4 dataset) and the model
architectures are the same as in the previous experiments. Results are given in Table 3. Data selection
methods show that it is helpful to emphasize part of the generic set and that this emphasis is complementary
to the benefit of fine tuning. The benefit varies across domains. For instance openweb is similar to the generic
set c4 and only modest gains are observed, while freelaw contains legal proceedings whose domain is surely
relatively rare in c4. Among methods, CDS and classifier provides a strong benefit for some datasets, but
only SOBA consistently ranks among the best methods.

5.3 Machine Translation

Method Pre-train Fine-tune
BLEU loss BLEU loss

Baseline 27.63 2.56 34.06 2.53
Mixing 31.34 2.60 33.11 2.69
CDS 34.14 2.53 34.25 2.53
Domain classif. 35.56 2.37 1 38.03 2.35
MetaWeightNet 26.81 2.59 33.34 2.53
LTR 28.60 2.73 31.15 2.71
Sparse DDS 33.53 2.46 35.83 2.44
Sparse Anograd 36.06 2.41 2 37.28 2.40
Sparse SOBA 34.23 2.39 3 37.16 2.38

Table 4: Machine translation: BLEU and loss on spe-
cific (newstest2020).

Our machine translation (MT) experiments learn a
translation model from English into German. They
rely on two datasets: our generic set is the Paracrawl
dataset (Release 1 for WMT 2018) with 36m sen-
tence pairs (Bañón et al., 2020). Our specific set con-
catenates the WMT newstest sets (2009–2019) with
source original English sentences, which amounts to
10,015 sentence pairs (Akhbardeh et al., 2021). We
use the 2020 newstest data (1,997 sentences) as our
validation set and leave the 2021 newstest data (1,418
sentences) as our test set. Our generic set is there-
fore a large crawled set with different types of text
and varying translation quality while the specific set
is a small set from a single domain with high quality
translation.

Our translation system is a sub-word model based on the transformer encoder-decoder architecture. For the
weighting network and the domain classifier we compose a shared embedding layer for source and target and
apply a multi-layered perceptron on the contatenated averaged embeddings of the source and target sentences.
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Table 1 gives architectural details. Our evaluation relies on BLEU scores (Papineni et al., 2002) for beam-4
decodes. We also reports some results in terms of loss (i.e. negative log likelihood with label smoothing
strength of 0.1). Our implementation is derived from the translation model of the Flax library (Heek et al.,
2020).

Table 4 reports the results of our machine translation experiments. In that case, SOBA and Anograd
provide a strong improvement over the baseline, both before (more than +7 BLEU) and after fine tuning
(more than +3 BLEU). However in this setting, the domain classifier is even more effective. Both for language
modeling and for machine translation, we remark that MetaWeightNet performs poorly. MetaWeightNet
predicts the selection weight from the loss on the example. This is a common strategy in active learning for
classification (Settles, 2009). This notably assumes that the loss per example is indicative of how well the
model perform on them. However, in the case of language modeling and translation, the loss per example
also reflects the intrinsic entropy of the examples which varies greatly across examples. It therefore seems
difficult to use the loss the sole feature for data selection for these tasks. Comparing the results of LTR and
DDS is also interesting as the methods are similar. DDS maintains a weighting model across steps, while
LTR just adapt the distribution for each batch and does not persist cross-steps selection parameters. The
benefit of DDS tells that the stability across steps and the lesser dependency on the batch size are important.

5.4 Image Classification

Method Pre-train Fine-tune
Acc. Loss Acc. Loss

Baseline 41.1 2.694 54.9 1.902
Mixing 55.1 1.928 3 55.1 1.928
CDS 42.3 2.512 2 55.2 1.957
Domain classif. 44.1 2.571 1 57.5 1.949
MetaWeightNet 35.5 2.743 43.9 2.351
LTR 36.4 2.712 44.9 2.364
Sparse DDS 40.5 2.609 53.2 2.067
Sparse Anograd 41.4 2.563 53.6 2.055
Sparse SOBA 41.1 2.622 53.9 2.057

Table 5: Image Classification: Accuracy on specific
(ImageNet67).

Our vision setup performs contrastive training over
image and captions – CLIP (Radford et al., 2021) –
for generic training and image classification for spe-
cific training. Specifically, contrastive learning should
select the correct caption within a large set of ran-
dom captions. This approach also allows to perform
classification by representing classes as captions of
the form "a photo of a <class name>" and letting
the model infer the most appropriate caption within
that set. As datasets, we rely on yfcc15m (Rad-
ford et al., 2021) for generic training (14.9m im-
age/caption pairs) and ImageNet67 (Eshed, 2020)
dataset for the specific task. Imagenet 67 consists
in 67 high level classes over Imagenet (Deng et al.,
2009), e.g. building, person, fish, dog... Like for other
experiments, we consider a setup with limited specific
data and take 2,010 specific examples, 30 per class,

for training. Held-out evaluation is performed with 50 images per class.

For our CLIP model, the image branch is a Resnet 50 (He et al., 2016) while the text branch applies an MLP
over precomputed sentence embeddings from Sentence BERT (Reimers & Gurevych, 2019). Training applies
contrastive learning only over alternative captions: for the generic loss, we consider a buffer of past captions
as negatives; for the specific loss, we consider all the other class captions as negatives. Our weighting network
is a small convolutional network over low resolution images (32x32). Table 1 gives architectural details.

Table 5 reports the results of our image classification experiments. Unlike for our text experiments, the
benefit of data selection is limited for this task. After fine-tuning, only the CDS and domain classifier
methods outperform the baseline model. The bilevel data selection methods do not outperform the baseline
method. We shed light on the cause of this poor performance in our further analysis in Section 6.3.
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Table 6: Does the weight model’s trajectory corre-
spond to a curriculum? Pre-train LM log perplex-
ity on Reuters for different trajectories.

Weight model trajectory log-perplexity

SOBA curriculum 1.047
Final weighting 1.044
Shuffled weighting 1.055

Table 7: Alternative sampling strategies to filter
the generic batch. Pre-train LM log perplexity on
Reuters.

Sampling strategy log-perplexity

Importance Sampling 2.038
Sampling without replacement 1.040
Selecting the highest weights 1.227

Table 8: Specific & Generic Acceleration Rates
Task SAR GAR

Language modeling (c4, reuters) 86.2% 69.4%
Machine translation (paracrawl, newstest) 78.1% 68.2%
Image classification (yfcc15m, imagenet67) 50.3% 49.8%

6 Analysis

6.1 Learning a Distribution vs Learning a Curriculum

Algorithm 1 produces a sequence of main model’s parameters ¹t and weighting model’s parameters ³t, that
go towards the solution of the bilevel problem (2). We investigate whether the weighting model’s parameters
correspond to a curriculum: does the evolution of the weighting parameters ³t adapt to the particular data
needed at each step, helping the model perform better than a fixed weighting scheme?

We are in the LM task setup described in Section 5.2, except that we use a smaller “large batch size” B
big
generic

(see Section 4.2). We run Algorithm 1 with SOBA to obtain a sequence ¹t, ³t. We then compare this setting
with two new training runs with standard ERM using different data weighting:
-Final weighting: a new main model is trained with fixed weighting from the weighting model ³T .
-Shuffled weighting: a new main model is trained with a random permutation Ã of the weights ³σ(t).
Table 6 shows that SOBA’s curriculum is not beneficial compared to the fixed final weighting scheme on this
task. The lesser performance of shuffled weighting certainly highlight poor weighting from early ³t. Results
reported in this section do not match Section 5.2 because of a smaller B

big
generic was used in this ablation.

6.2 Big Batches: Importance Sampling vs Filtering

In Algorithm 1, we denote filter(B, ³, n) the operation resulting in a smaller sub-batch of size n starting
from the generic batch B using the weighting network parameterized by ³. To get an unbiased estimate of
the re-weighted generic loss, one can apply importance sampling and sample (with replacement) from the
weight distribution induced by ³ on B. Alternatively one can instead sample without replacement from that
distribution or restrict the batch B to its highest weighted elements. The last two alternative are biased.
Nevertheless, our results in Section 5 uses sampling without replacement.

Table 7 justifies this choice. Basically, we observe that the learned weighted distribution is concentrated along
few examples which yield importance sampling batches to contain less diverse sets than when sampling with
replacement. Similarly, cutting the tail of the distribution (highest weights selection) drop lower weighted
– but still helpful – examples. These experiments illustrate that gradient-based estimates fail to account
for the long term benefit of a more diverse training set. Although sampling with replacement alleviates this
issue, more principled solutions should be investigated in future work.

6.3 On the Discriminative Power of Gradient Aligments

Our experiments highlight that bilevel optimization for data selection performs differently across tasks. We
explore if a simple diagnostic could help understand these differences. Our method considers a base model ¹t
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trained on the generic distribution for t steps. We take a diagnostic batch Bmix which blends unseen generic
and specific data in equal proportion. We want to verify how the weighting model on the mixed data would
move away from a uniform weighting scheme in an outer update. We want to observe whether the weighting
model would increase the weights of specific examples if some of these were "hidden" within the generic set.

For DDS and Anograd, increase or decrease in weights depends on the alignment between individual example
gradients from x ∈ Bmix and the expected gradient on the training specific batch Bspecific.

a(x, Bspecific) = ∇θℓ(x, ¹)¦ ∇θℓ(Bspecific, ¹)

between individual example gradients from x ∈ Bmix and the expected gradient on the training specific batch
Bspecific, denoted as ℓ(Bspecific, ¹) := 1

|Bspecific|

∑

x∈Bspecific
ℓ(x, ¹). We then normalize the batch gradient and

define,

anorm(x, Bspecific) = ∇θℓ(x, ¹)¦ ∇θℓ(Bspecific, ¹)

∥∇θℓ(Bspecific, ¹)∥
.

This normalization allows to take an example x and verify whether its gradient aligns better with the specific
batch gradient than with the generic batch gradient, i.e.

anorm(x, Bspecific) > anorm(x, Bgeneric).

We report the rate at which this inequality is true for specific examples,

SAR = E
x∼Dspecific

Bspecific∼Batch(Dspecific)
Bgeneric∼Batch(Dgeneric)

1 {anorm(x, Bspecific) > anorm(x, Bgeneric)}

We call this measure the Specific Acceleration Rate, SAR. We would like this rate to be high, meaning
that, according to the Taylor approximation of the loss, updates collected from a batch of specific examples
should improve the loss on a given specific examples faster than updates collected from a generic batch.
Symmetrically, we define the Generic Acceleration Rate,

GAR = E
x∼Dgeneric

Bspecific∼Batch(Dspecific)
Bgeneric∼Batch(Dgeneric)

1 {anorm(x, Bgeneric) > anorm(x, Bspecific)}

It is also desirable that this rate is high. When SAR, GAR are close to chance (50%), there are two possible
explanations, (i) either generic and specific batches have the same effect on the model, meaning that data
selection is unlikely to be helpful since training on generic is already as good as training on specific for the
purpose of minimizing the specific loss; (ii) alternatively, the linear approximation (order 1 Taylor expansion)
does not help discriminating between the effect of generic and specific examples on the specific loss. In that
later case, such a learning problem will be a challenge for bilevel optimization methods where gradient
alignments indicates which part of the dataset to upweight.

Table 8 reports SAR and GAR for our results. These results are indicative of the empirical benefit of
bilevel optimization methods for data selection. Language modeling where DDS, Anograd and SOBA are
advantageous, has the highest SAR. Conversely, our image classification problem shows near random SAR,
GAR in line with the poor performance on bilevel methods on this problem. We therefore consider that
measuring SAR/GAR can be a simple but informative diagnostic to assess the potential benefit of bilevel
methods on a new problem.

6.4 Re-using Weighting Strategies with Larger Scale Models

The weighting network is trained by solving the bilevel problem (2), where the loss function ℓ depends on
the model’s architecture. We investigate whether a weighting network learned with a small model can be
re-used out-of-the-box to train a large model and get good performances on the specific set. The weighting
network is frozen: the large model is trained by solving minθ

∑

x∈Dgeneric
w(x; ³)ℓ(x; ¹) with ³ fixed to the

final parameters of the weighting network trained with the small model. We perform this experiment on
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Figure 1: Specific loss as a function of time for the scaling experiment. Sparse-SOBA — which learns
weights on the fly — accelerates learning. Using frozen weights learned with a small model leads to even
faster training because this removes the cost of learning the weights. The training acceleration is significant.
The loss value of 1.3 is reached 8.5 (resp. 3.9) times faster by the frozen weights (resp. Sparse SOBA)
method than the baseline. The loss value of 1.25 is reached 21 (resp. 5) times faster by the frozen weights
(resp. Sparse SOBA) method than the baseline. Note that the Sparse-SOBA method eventually gets better
than the frozen weights method, as reported in Table 10, but this happens after a longer training time.

Table 9: Small and base model architectures
for scaling up the language modeling task.

Model Layers Res. dim. ff dim. # Params

Small 4 128 512 824.064
Large 12 256 1024 9.530.880

Table 10: Results of the scaling experiment

Model Method Pre-train

Small Sparse SOBA 1.292
Large Baseline 1.197
Large Sparse SOBA 1.018
Large Weights from Small 1.034

the language modeling task (Section 5.2), where the small model and large model architectures are specified
in Table 9; the large model’s architecture is the same as in Section 5.2, and it has about ten times more
parameters. We observe that the weighting network learned with the small model transfers to the large
architecture and leads to a large decrease in the loss on the specific set, which is only slightly worse than
using the Sparse SOBA method on the large model itself. The weighting network learned at a small scale
can seamlessly be used at a larger scale and lead to significant performance improvement on the specific set.

In order to have a different perspective on the improvements provided by the reweighting methods, we display
the training curves for that experiment in Figure 1. We see that the proposed methods lead to significantly
faster training on the specific set.

7 Conclusions

This work studies bilevel optimization for learning training distributions. We consider the setup where a
model is trained from two training sets, a large generic set and a small specific set, where only the later is
representative of the test conditions. We propose a scalable algorithm that learns a training distribution
over the generic data such that the loss on the specific set is minimized. We showed that our formulation
gathers independently-proposed gradient-based methods for data selection under a common framework. We
introduced an algorithm that enables streaming through the generic dataset quickly by examining most of
the generic samples with only an inexpensive small auxiliary model. This work reported a comprehensive and
realistic empirical comparison of data selection strategies across language modeling, machine translation and
computer vision. We studied the conditions in which gradient-based data selection is effective and propose
a diagnostic based on gradient alignment to efficiently assess these conditions.
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Our work also delineates interesting questions for future work. Conceptually, we observe that gradient-
based selection methods fail to reward properly the diversity of the selected samples (Section 6.2), which
deserves further theoretical study. Empirically, the complementarity between fine-tuning and generic data
selection highlights that the updates collected from re-weighted generic training and from specific training
are different. The existence of complementary updates and their exploitation might also be possible even
when one is presented with a single monolithic training distribution.

The experiments in this paper have a bigger scale than most experiments found in the data reweighting
litterature (Ren et al., 2018; Shu et al., 2019). However, our methods are not applied to what is nowadays
considered “large” models. The scaling ablation (subsection 6.4) suggests that the proposed methods would
be well-suited for large-scale models, and we plan to conduct experiments on such models in the future.
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A Common Settings in Transfer Learning

The transfer learning literature defines various settings to leverage training data from a different task and/or
distribution. Although not all papers use the same definitions, Table 11 presents the most common settings
with reference to the literature supporting these definitions.

18

https://aclanthology.org/D17-1147
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://aclanthology.org/W18-6314
https://aclanthology.org/W18-6314
https://openreview.net/forum?id=cO1IH43yUF
https://doi.org/10.1109/ICCV48922.2021.00076
https://doi.org/10.1109/ICCV48922.2021.00076


Published in Transactions on Machine Learning Research (10/2024)

Table 11: Classical Transfer Learning Settings

Transfer Learning leverages a source distribution in order to perform better on a target distri-
bution (Thrun & Pratt, 1998).

Multitask Learning improves generalization by leveraging the information contained in the
training signals of related tasks (Caruana, 1993; 1997).

Domain Adaptation aims to improve accuracy on target distribution with insufficient labeled
data by leveraging a model trained on a different but related source distribution (Farahani
et al., 2021).

Unsupervised Domain Adaptation considers the setting where labeled source domain data
(x, y) are available for training, while only unlabeled (x) data from the target domain are
available (Ganin & Lempitsky, 2015).

Distribution Shift considers that the test distribution is different from the training distribution,
usually in the context where the model cannot be retrained to adapt to the new test
conditions (Koh et al., 2021).

Gradual Distribution Shift is an online setting where the training distribution progressively
evolves (Kumar et al., 2020).

Covariate shift corresponds to a predictive setting where the distribution over the input features
p(x) is different at training and test time, while the posterior distribution p(y|x) does not
change (Bickel et al., 2009).

Label shift corresponds to a predictive setting where the class prior p(y) between train and test
changes but the conditional distribution p(y|x) is assumed identical (Garg et al., 2020).

Fine-tuning is a specific domain adaptation technique which considers training a model on the
target domain from an initial model trained on the source domain (Matic et al., 1993;
Denevi et al., 2018; Zhang et al., 2021).

Zero-Shot Task Transfer addresses new tasks at test time without updating the
model (Larochelle et al., 2008). It typically relies on a way to represent novel tasks
in order to condition the model, e.g. text prompts (Radford et al., 2019; Srivastava et al.,
2022).

Few-Shot Task Transfer is similar to zero-shot transfer and does not update the model weights.
As a difference, the task conditioning information provides few training instances along
with the description of the tasks (Radford et al., 2019; Srivastava et al., 2022).

B Multi-Task Extension

We extend the proposed framework to the multi-task setting, when there are several downstream specific
tasks for which one seeks a good model. We treat the outer loss as the average loss over the specific sets:
let D1

specific, . . . , DT

specific a set of T specific sets. In Equation 2, we simply use

Lspecific(¹∗(³)) =
T

∑

t=1

∑

x′∈Dt

specific

ℓ(x′; ¹∗(³)) (5)

so that the outer loss minimization leads to good performance on average over the specific sets. Algorithm 1
is adapted to this case by sampling a specific batch Bspecific at random between each specific set; the rest

19



Published in Transactions on Machine Learning Research (10/2024)

Table 12: Multi-task experiment. “Dialogue” consists of the three sets opensubtitles, openwebtext2, and
stackexchange, “Academic” consists of the sets arxiv, pubmed, and wikipedia.

Method “Dialogue”
Avg. opensubtitles openwebtext2 stackexchange

Baseline 1.157 1.158 1.201 1.113
Classifier 1.148 1.167 1.154 1.122
CDS 2 1.140 1.180 1.163 1.077
SOBA 1 1.129 1.144 1.204 1.039

“Academic”
Avg. arxiv pubmed wikipedia

Baseline 0.966 0.994 0.942 0.960
Classifier 2 0.896 0.980 0.815 0.892
CDS 1 0.894 0.947 0.807 0.929
SOBA 0.908 0.945 0.848 0.931

of the algorithm is identical. We conduct such an experiment in the Language Modelling setting described
in subsection 5.2, where the specific sets consist of T = 3 datasets from the Pile dataset. We consider
two different subsets of 3 specific sets: “dialogue” sets {opensubtitles, openwebtext2, stackexchange}
and “academic” sets {arxiv, pubmed, wikipedia}. In Table 12, we report results after fine-tuning on the
specific loss — that is, models are fine-tuned on a mixture of the T = 3 datasets. We observe that the bilevel
methods and the classifier both improve over the baseline. As expected, the resulting models are good on
each dataset but are not as good as models pre-trained and fine-tuned on one dataset only, as shown in
subsection 5.2.

C Hyper-parameters

Table 13: Hyperparameters for the LM experiment

Hyperparameter Value

batch_size 128
dropout_rate 0.1
big_batch_size 16384
optimizer adam
learning_rate 0.002
meta_learning_rate 0.001
meta_optimizer adam
num_steps 300000
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Table 14: Hyperparameters for the translation experiment

Hyperparameter Value

batch_size 256
dropout_rate 0.1
big_batch_size 2048
optimizer adam
learning_rate 0.0002
meta_learning_rate 0.001
meta_optimizer adam
num_steps 500000

Table 15: Hyperparameters for the vision experiment

Hyperparameter Value

batch_size 256
big_batch_size 2048
optimizer SGD + momentum
learning_rate 0.05
meta_learning_rate 0.0001
meta_optimizer adam
num_steps 500000
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