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Abstract

Large language models are versatile tools but are

not suitable for small inference budgets. Small

models have more efficient inference but their

lower capacity means that their performance can

be good only if one limits their scope to a spe-

cialized domain. This paper explores how to get

a small language model with good specialized

accuracy, even when specialization data is un-

known during pretraining. We propose a novel

architecture, projected networks (PN). PN is a

high capacity network whose parameters can be

linearly projected into a small network for fine

tuning. We assess the empirical effectiveness of

our solution compared to small model training,

distillation and hard mixture of experts.

1. Introduction

Large Language Models (LLMs) can address a wide range of

language tasks when learning from a large, diverse generic

training set (Brown et al., 2020; Bommasani et al., 2022).

This rich set ensures that the model fits many subdomains

close to the tasks it will eventually address. Model gen-

erality is particularly impactful for tasks where the cost

of collecting a representative training set cannot be justi-

fied. However, LLM inference is costly since fitting a large

training set requires many parameters, which results in a

high inference cost. This cost restricts LLMs to high-value

applications. While efficient inference is an active research

area (Aminabadi et al., 2022; Sheng et al., 2023; Dettmers &

Zettlemoyer, 2023), reducing model size is the main solution

for applications under tight inference constraints.

A smaller language model (SLM) cannot fit a generic training

set as well as an LLM. It is hence necessary to forgo the

generality of the model to devote its limited capacity to the

targeted specialization domain. While a large specialized

training set for the application at hand would be ideal for

training, such a set is costly and usually justified only for
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high-value applications. Many applications, therefore, have

to face both a limited inference budget and a limited in-

domain training set size. For instance, some applications

cannot afford to collect more than a few million tokens worth

of training data (1m tokens ≃ 10 books). Such applications,

with low inference and low data collection budgets, are

facing a challenging problem.

This paper studies training small specialized models, even

with limited domain data. To achieve low perplexity, we

propose projected networks, a high-capacity language model,

which can be linearly projected into smaller standalone

language models. Fine-tuning a single of these models

is efficient and yields better perplexity than small vanilla

transformer training or knowledge distillation.

2. Projected Language Models

Our inference constraints require that the final specialized

model is a low-capacity SLM. Prior to fine-tuning on the

specialization data, the capacity limit does not apply to

generic pretraining. We devise a pretraining strategy to take

advantage of this asymmetry. At pretraining time, we train

a network with many parameters, but each example only

interacts with a projection of the parameters onto an SLM.

Like distillation, this strategy trains a model with many

parameters, but unlike distillation, all model evaluations

during training are already constrained to operate within the

size limits.

Projected network Our Projected Network (PN) trains

jointly a collection of small models or experts,

{SLM-pnğ}
ġ
ğ=1

. Each expert is instantiated via its specific

linear projection of the large parameters; see Figure 1. We

train a large capacity PN network during generic pretraining.

Once the specialized training data are available, specialized

fine-tuning starts from one of the experts. Different strategies

for expert selection are discussed in our experiments.

The PN model adds capacity to the linear layers of a model.

It is configured via 3 hyper-parameters ℎ, :, <. ℎ is a multi-

plicative factor increasing the overall model capacity while

: independently controls the number of experts. Finally,

< controls the small capacity specifically allocated to each

expert. For each SLM-pnğ with 8 = 1 . . . : , the parameter

matrix , (Ģ,ğ) ∈ RĚ×Ě
′
of a layer ; is computed via a linear
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Figure 1. Projected networks (right) unlike distillation (left) instantiate small models in closed-form.
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where �ğ ∈ R
ģ is an expert-specific vector, " (Ģ) ∈ Rģ×ℎ

is a layer-specific matrix and ) (Ģ) ∈ RĚ×Ě
′×ℎ is a parameter

tensor. This decomposition is used to form the matrices

, (Ģ,ğ) , and the actual parameters of the network that are

learned are the vectors �ğ , the matrices " (Ģ) and the ten-

sors ) (Ģ) . In our experiments, our SLM-pn experts are

transformers and we only apply the PN decomposition to

the feed-forward layers (i.e. multi-layer perceptron, MLP)

which hold most of the model parameters.

The PN can separately set the overall network size via ℎ

and the number of distinct experts via : . Each expert is

associated with a cluster, which is a subset of the generic

pretraining set. The details of this clustering are given in

Section 3.1. We associate each training example G with a

cluster variable 2(G) = 1 . . . : and its loss on G is computed

with SLM-pnę (Į ) . Training optimizes all experts jointly by

minimizing the expected loss on the generic set.

For specialization, we select one expert SLM-pnğ , form the

corresponding matrices , (Ģ,ğ) which are now the learnable

parameters of the instantiated network, and fine-tune it on

the specialization dataset. On preliminary experiments, we

found that picking the pre-trained expert 8 corresponding to

the most frequent cluster in the specialization dataset is an

effective strategy.

Hard Mixture of Experts A hard mixture of expert (Gross

et al., 2017) divides the generic set in smaller subsets via

clustering (see Section Section 3.1), and pretrains a small

model, SLM-mix, on each subset. Its pretraining cost and its

overall number of parameters are high as both scale linearly

with the number of clusters. Inference with a hard mixture

typically forwards each example to the expert corresponding

to the cluster the example belongs to. The hard mixture can

be compared to a special case of a PN network in which

ℎ = : , �ğ = Xğ ∈ R
ġ and " (Ģ)

= I. In that case, all weight

matrices rely on independent slices of the parameters.

In the hard mixture, unlike in the PN, one cannot set the

number of experts : and the capacity multiplier ℎ indepen-

dently. The expert parameters are not shared and cannot

leverage synergies between similar clusters. On the other

hand, the learning is embarrassingly parallel since each

expert pretraining is independent of the other experts. Like

for PN, specialization can be performed inexpensively by

fine-tuning a single expert. Despite these differences, our

experiments reveal similar benefits for both methods.

3. Experiments & Results

We target an LM with a good specialized perplexity despite

having little specialization data and inference constraints

limiting the model size. We call Small Language Model

(SLM) a transformer of the size allowed by our inference

constraint. We consider different limitations in the amount of

in-domain specialization data available for training. Besides

data from the specialization domain, leveraging a large

generic training set is attractive. Our setting suggests widely

used baselines.

Our first 3 baselines train an SLM. We first consider an

SLM model trained only on the generic data (SLM-generic).

This model can be effective if the generic and specialization

distributions are close. We then consider an SLM trained

only on the specialization data (SLM-nopt). This model can

be effective if the specialization training set is large enough.

Finally, we consider a model pre-trained on the generic data

and fine-tuned on the specialization data (SLM-pt). The

amount of fine-tuning can be adjusted via early stopping.

This adjusts a trade-off between the proximity to the generic

distribution and overfitting to the specialization set.

Since our capacity constraint is motivated by inference

efficiency, we can consider larger models at training time

and rely on distillation to satisfy the inference requirements.

Specifically, we consider training a large language model

(LLM) that has a bigger size than the inference constraint

allows via generic pretraining and specialization fine-tuning.

A pre-trained SLM student is then fine-tuned to a mixture

of the specialization data and next-word distributions from
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Table 1. Number of parameters for pretrain-

ing and inference.

Model Num. parameters (m)
Pretrain Inference

SLM 126 126
-mix 2,016 126
-pn 1,422 126
LLM 771 771

Table 2. Model throughput, GPUh per 1B

training tokens.

Model Training Infer.
Generic Sspecializ

SLM 2.2 2.2 0.61
-mix 2.2 2.2 0.61
-pn 3.6 2.2 0.61
LLM 7.7 7.7 2.54

Table 3. Baseline perplexity on the Pile (av-

erage) (<650 GPUh of pretraining).

Model Pretrain Specialized
1M 8M 64M

SLM 33.0 18.2 14.8 12.0
-nopt N/A 227.1 45.6 17.6
LLM 28.1 14.4 12.5 10.0

the teacher. We call this model SLM-d.

3.1. Clustering of the Pre-training Data

SLM-pn and SLM-mix rely on a clustering of the generic

pre-training set. Clustering associates each training example

with a discrete latent variable that we use to condition the

projection in projected networks (section 2). To cluster the

data, we embed each document in the generic set as a vector

using Sentence BERT (Reimers & Gurevych, 2019). The

documents longer than the maximum context we consider

(1,024) are broken into nonoverlapping windows. Then, we

use k-means to cluster the generic set into : clusters.

3.2. Methodology

We study the training methods at various training costs. We

report training costs and which part of the cost can be shared

across multiple domains. We consider 4 important metrics:

Generic training cost: the cost of the training phase that

can be performed before the specialization data are available,

on a generic training set. This cost is domain-independent

and is often called pretraining. The generic training data are

essential when specialization data are limited.

Specialization training cost: the cost of the training per-

formed once the specialization data are available. This cost

is not shared across different specializations.

Inference cost: the inference cost of a specialized model.

Low inference cost allows wider, cheaper deployment.

Size of the specialization set: it varies across applications

and influences pretraining and specialization choices.

Taking the inference cost and the specialization data size

as hard constraints, we study the operating curves resulting

from varying the generic and specialization training costs.

We measure training costs in hours of graphic processor

compute time (GPUh) on the same hardware (Nvidia-A100).

We consider pretraining costs ranging from 10 to 650 GPUh

and specialization costs ranging from 0.3 to 120 GPUh.

This work focuses on language modeling. Performance

is measured by perplexity, using 20k held-out documents

per dataset. We report perplexity on generic and special-

ization data. We report macro-averaged perplexity across

specialization domains: we compute the mean negative log-

likelihood per token for each domain, average these results,

and compute the exponential. All domains hence get the

same weight, regardless of the number of tokens per held-out

set.

3.3. Datasets & Hyperparameters

Our generic pretraining set is c4, a large dataset of English

text derived from commoncrawl (Raffel et al., 2020), to-

kenized with a 32k sentence piece model. We specialize

to nine domains from Pile (Gao et al., 2021): arxiv (sci-

ence), europarl (parliamentary proceedings), freelaw (legal

text), gutenberg (old books), opensubtitles (theatrical sub-

titles), openwebtext2 (forum), pubmed-abstracts (medical

abstracts), stackexchange (Q&A mostly about technical top-

ics), wikipedia (encyclopedia articles). We vary the amount

of specialization training data available and consider sets of

size 1, 8 and 64m tokens for each domain.

Table 1 reports the number of parameters for the pretrained

and specialized models. Table 1 illustrates that SLM-pn and

SLM-mix are as small as SLM for inference after special-

ization while their overall number of pretrained parameters

is larger than LLM. Table 2 reports the throughput of the

models. All SLM models have the same specialization

throughput while SLM-pn has a lower throughput than SLM,

SLM-mix for pretraining. LLM is more expensive in all

cases. Note that the parameter count and throughput of the

SLM-generic, SLM-nopt, SLM-pt and SLM-d is the same as

for SLM. Table 3 presents the upper limit in training budgets

for pretraining and specialization over all settings

3.4. Results

We vary pretraining budgets and report perplexity on the

generic pretraining set (c4) for each method in Figure 2.

When we consider SLM-pn and SLM-mix, we observe that

even if the number of pretrained parameters is larger than

LLM, they do not enjoy as good perplexity. However, their

perplexity is better than SLM while they are as efficient

when tested or fine-tuned on a single cluster.

Generic perplexity (c4) is not our main goal and we now

examine specialized perplexities. Figure 3 reports the results

before fine-tuning. Specialized perplexities are much higher
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Table 4. Train cost upper limits (GPUh)

Model Pretrain Specialization
1M 8M 64M

LLM 650 0.12 0.5 3.5
SLM 530 0.02 0.07 0.5
-d 1,850 0.7 2.8 21
-mix 650 0.02 0.07 0.5
-pn 650 0.02 0.07 0.5
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Figure 3. Specialization ppl. before

fine-tuning.
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Figure 4. Specialized perplexity on the Pile subsets (average) after fine-tuning with different amounts of specialization data.

than the c4 perplexities, indicating that specialization is

necessary. Figure 4 (a) reports the results after fine-tuning

several pretrained checkpoints for each method on the 1M

token dataset of each domain. Since 1M tokens is a small

set, fine-tuning relies on a small learning rate and early

stopping (base learning rate divided by 3, stopping when

validation loss stops improving, which is always less than

2k fine-tuning steps on one GPU when validation loss stops

improving). Fine-tuning is highly beneficial for all methods

and results in significantly improved perplexity. We also

remark that pre-fine-tuning perplexity on the Pile is not

necessarily a good indicator of post-fine-tuning perplexity:

e.g. the ordering between SLM-mix and SLM-pn also

changes during fine-tuning.

We later consider fine-tuning on 8 and 64 million tokens

per domain, see Figure 4 (b) and (c). These experiments

fine-tune longer (resp 4k and 30k steps) and keep the base

learning rate. We observe that the benefit of a good starting

point provided by SLM-pn and SLM-mix (compared to

SLM) erodes as the domain training set size increases.

We compare SML-pn and SLM-mix with distillation, SLM-

d. The total training cost of distillation includes the teacher

and the student training costs. We vary the overall distil-

lation training cost by considering teachers with different

pretraining budgets. Figure Figure 5 shows that distillation

is not competitive in terms of perplexity vs training cost

compared to SML-pn and SLM-mix.
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Figure 5. Comparison with distillation, average perplexity after

fine-tuning with 1m specialization tokens.

4. Related Work

Domain adaptation for LM has a long history, predating

neural network language models (Rosenfeld, 2000). This

research stemmed from the observation that models trained

on large amount of data, even far from the targeted domain

were impactful on end applications (Brants et al., 2007).

After neural language models were introduced (Bengio et al.,

2000), they were also scaled up to benefit from increasing

amount of training data (Raffel et al., 2020; Brown et al.,

2020; Chowdhery et al., 2022; Touvron et al., 2023). This

growth involves a trade-off between training a model from a

large dataset (i.e. reducing estimation errors) or a dataset

representative of the end application domain (i.e. having a

training distribution representative of test condition), both

essential to good generalization (Vapnik, 1995).

Research on efficient LM inference grew as model size in-

creased, including distillation (Hsieh et al., 2023; FitzGerald

et al., 2022), weight quantization (Xiao et al., 2023; Dettmers
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& Zettlemoyer, 2023) and pruning (Ma et al., 2023; Xia

et al., 2023). Mixtures of experts also aim to decouple

overall model capacity and inference efficiency (Shazeer

et al., 2017; Du et al., 2022; Clark et al., 2022).

5. Conclusions

This work considers a common double practical constraint

for language modeling: the scarcity of in-domain training

data and a limited inference budget. We propose to train

small, efficient language models and improve their accuracy

by rethinking the pretraining process on abundant, generic

training data. This paper formalizes the problem and intro-

duces Projected Networks, a novel architecture that trains a

collection of small models jointly. Each model of the col-

lection can be used on its own, for instance, for fine-tuning

on a new domain. The empirical benefit of our contribution

is shown across multiple domains, training budgets and

training set sizes. Another benefit of the projected networks

is that they can be specialized without access to pre-training

data. For instance, if the specialization data is sensitive, the

data owner can cheaply instantiate and fine-tune the model

themselves. Our methodology is not specific to language

modeling and we plan to extend it to other modalities where

inference constraints are also important (e.g. computer

vision).
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Appendix

A. Hyper-parameters

All our language model are either instances of SLM or LLM.

We rely on the parameters from Table 5. Table 6 extends

Table 1 to include the parameter count for the models from

all the sections.

B. Interpolated Perplexities

We report the data from the Figures 2 – 4 in Table 7. Since

the methods were evaluated at a fixed frequency in steps,

we linearly interpolate perplexities and step counts to report

results at the same pretraining costs for all methods.

C. Number of Fine-tuning Steps

Figure 6 reports the fine tuning cost each model. This

cost corresponds to the number of steps to reach the best

validation perplexity. It is an optimistic cost estimates as

one usually needs a few more steps to assess that further

improvement is not expected. The fine-tuning cost seems

to grow ∼ 10X when the fine-tuning set size grows 8X.

The LLM usually requires less steps than the SLMs but its

steps are more expensive. The vanilla SLM overfits earlier

than the other SLMs (SLM-mix, SLM-pn) for the small 1M

specialization set but not for the larger sets.

D. Clustering & Number of Experts

The clustering of c4 is used by the mixture model to define

each expert scope. Similarly it is used as the conditioning

variable by the PN. Table 8 report the concentration of

each specialization domain from Pile on their most frequent

cluster. A high concentration could be positive since it means

that, when fine-tuning SLM-pn or SLM-mix conditioned

on this cluster, one starts starts from pretrained parameters

containing most of the pretraining data relevant to the domain

at hand. The table also reports the most frequent cluster on

c4 to highlight that the specialization domain distributions

differ from the c4 distribution.

Table 5. Transformer parameters

SLM LLM
Architecture

Mum. layers 7 7
Model dimension 1024 2816
Inner MLP dimension 4096 11264
Num. attention heads 8 22

Optimizer

Optimizer Adam Adam
Learning rate 1e-4 1e-4
Clipping norm 5.0 5.0
Linear warmum steps 1,000 1,000

Table 6. Number of parameters (in millions) for pretraining and

inference.

Model Num. parameters (m).
Overall Inference

SLM 126 126

SLM-pn 16 experts 756 126
32 1,422 126
64 2,770 126

SLM-mix 4 experts 504 126
16 2,016 126
64 8,064 126

256 32,256 126

LLM 771 771

D.1. Number of Experts for the Hard Mixture of Experts

The overall size of the mixture and its training cost are

proportional to the number of clusters. Our main results

(Fig. 2, Fig. 4, etc) use 16 experts. We compare results with

4 to 256 experts. Intuitively, if the number of experts is too

large, the model would cost more to train and each cluster

would not contain enough data to train a model of the size

of SLM. Conversely, if the number of experts is too small,

the training cost is low but each SLM-sized expert would be

trained from a large cluster and would underfit its training

set. Also, the large clusters might be too generic and far

from the distribution of the targeted set. Figure 7 shows the

macro-averaged perplexity on the Pile as a function of the

generic pretraining time for the different mixture sizes in the

case of the 1M token specialization set.

D.2. Number of Experts for the Projected Network

The number of experts in our PN allows tuning the overall

number of parameters while keeping the size of the inference

model constant. Figure 8 shows perplexity on the Pile

subsets after fine-tuning on 1M tokens. More experts always

perform better per iteration, however, 32 experts is more

compute-time efficient in our setup.

E. Individual Subset Results

Figure 9 decomposes the results in Figure 4 (b) per domain.

The subset results are mostly consistent with the average but

we observe few differences. SLM-pn and SLM-mix have a

close average and the best method among them varies per

subset. Also we notice that both methods do not outperform

SLM on wikipedia and openwebtext2. The disadvantage of

SLM-pn and SLM-mix over SLM can be observed before

fine-tuning, as shown on Figure 10. We report the entropy of

the cluster histograms in Table 9 and observe that wikipedia

and openwebtext2 are the domains with the highest entropy.

This means that the c4 data similar to these datasets is

more spread across clusters than for the other domains.

Conditioning SLM-pn and SLM-mix on a single cluster

9



Projected Language Models

Table 7. Interpolated perplexities at fixed pretraining costs (GPUh)

Model Pretrain Num. Num. Generic Spec. PPL
cost steps GPU PPL No ft 1M 8M 64M

SLM 100 798k 8 20.51 33.74 19.31 15.61 12.37
SLM-mix 100 464k 16 17.13 34.35 19.82 15.82 12.62
SLM-pn 100 195k 8 18.90 33.44 18.57 15.58 12.53
LLM 100 108k 8 17.00 29.22 17.11 15.49 11.55

SLM 200 1597k 8 19.71 34.43 18.58 15.12 12.09
SLM-mix 200 928k 16 15.92 31.94 18.48 14.98 12.15
SLM-pn 200 390k 8 17.74 32.30 17.76 14.95 12.13
LLM 200 217k 8 15.58 28.18 15.62 14.03 10.81

SLM 400 3195k 8 19.17 36.61 18.22 14.80 12.00
SLM-mix 400 1000k 16 15.82 31.04 17.56 14.42 11.84
SLM-pn 400 780k 8 16.90 32.54 17.17 14.48 11.86
LLM 400 434k 8 14.54 28.98 15.03 13.05 10.28

SLM-mix 600 1000k 16 15.82 31.03 17.18 14.21 11.73
SLM-pn 600 1170k 8 16.53 32.53 16.95 14.29 11.74
LLM 600 651k 8 14.09 28.62 14.50 12.64 10.07
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Figure 6. Fine tuning cost as a function of the pretraining cost.

Table 8. Fraction of data in the most frequent cluster, per domain.

Domain Num. clusters
4 16 64 256 1024

arxiv 0.95 0.92 0.55 0.52 0.29
europarl 0.52 0.53 0.45 0.44 0.27
freelaw 0.48 0.73 0.87 0.72 0.35
gutenberg 0.75 0.54 0.35 0.27 0.29
opensubtitles 0.97 0.68 0.26 0.28 0.32
openwebtext2 0.53 0.35 0.12 0.04 0.02
pubmed abs. 0.94 0.54 0.41 0.20 0.06
stackexchange 0.95 0.94 0.78 0.61 0.31
wikipedia 0.71 0.58 0.21 0.07 0.03

c4 0.32 0.12 0.04 0.02 0.00
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Figure 7. Specialization perplexity of mixture models with 4-256

experts on Pile subsets (average) after fine-tuning on 1M tokens.

variable might not model well these domains. Of course,

this correlation between entropy and fine-tuned perplexity of

SLM-mix, SLM-pn could be fortuitous. This motivates us

to investigate the impact of the different clustering methods

and their metrics in future research.
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Figure 8. Specialization perplexity for PN with different number

of experts after fine-tuning on 1M tokens.

Table 9. Entropy of the cluster histogram for each domain.

Domain Num. clusters
16 64 256 1024

arxiv 0.41 1.02 1.80 2.58
europarl 1.48 1.83 2.31 3.14
freelaw 1.01 0.70 1.44 2.49
gutenberg 1.57 2.42 3.21 3.85
opensubtitles 1.16 2.61 2.95 3.44
openwebtext2 2.19 3.60 4.89 6.12
pubmed abs. 1.07 2.14 3.22 4.43
stackexchange 0.39 0.97 1.78 3.24
wikipedia 1.73 3.20 4.54 5.64

c4 2.73 4.07 5.46 6.85
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Figure 9. Specialized perplexity on individual subsets after fine-tuning on 1M tokens.
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Figure 10. Specialized perplexity on individual subsets after fine-tuning on 1M tokens.
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