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Abstract

Large language models are trained on mas-

sive scrapes of the web, which are often un-

structured, noisy, and poorly phrased. Cur-

rent scaling laws show that learning from such

data requires an abundance of both compute

and data, which grows with the size of the

model being trained. This is infeasible both

because of the large compute costs and dura-

tion associated with pre-training, and the im-

pending scarcity of high-quality data on the

web. In this work, we propose Web Rephrase

Augmented Pre-training (WRAP) that uses an

off-the-shelf instruction-tuned model prompted

to paraphrase documents on the web in specific

styles such as “like Wikipedia” or in “question-

answer format” to jointly pre-train LLMs on

real and synthetic rephrases. First, we show

that using WRAP on the C4 dataset, which

is naturally noisy, speeds up pre-training by

∼ 3×. At the same pre-training compute bud-

get, it improves perplexity by more than 50%

on average across different subsets of the Pile,

and improves zero-shot question answer accu-

racy across 13 tasks by more than 2%. Second,

we investigate the impact of the re-phrasing

style on the performance of the model, offering

insights into how the composition of the train-

ing data can impact the performance of LLMs

in OOD settings. Our gains are attributed to

the fact that re-phrased synthetic data (i) in-

corporates style diversity that closely reflects

downstream evaluation style, and (ii) has higher

‘quality’ than web-scraped data.

1 Introduction

Large language model (LLM) pre-training has been

largely democratized and open-sourced, allowing

various academic labs, and industries to pre-train

custom LLMs. Yet, a key differentiator between

these models is the composition and size of the

data used to train them. Data curation strategies

*Equal Contribution
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are required to filter out scrapes of the web that

are unstructured and/or poorly phrased (Eisenstein,

2013). While some of these strategies have been

made public (Brown et al., 2020; Wenzek et al.,

2019; Penedo et al., 2023), most state-of-the-art

data curation techniques are unknown to the re-

search community, and only anecdotal evidence

remains. Research on data curation requires mul-

tiple rounds of re-training, making it an expensive

endeavour to document techniques that lead to prac-

tical improvements. On the other hand, scaling

laws for language models (such as Chinchilla scal-

ing laws (Hoffmann et al., 2022)) show that with

increasing model sizes, we should also increase

both the training compute and data size linearly.

This is infeasible because (a) high-quality data is

limited (Villalobos et al., 2022), and repeating for

even a small number of epochs (4 or more) results

in diminishing returns or overfitting (Muennighoff

et al., 2023; Touvron et al., 2023; Xue et al., 2023);

and (b) pre-training for such long durations is pro-

hibitively expensive.

Meanwhile, the use of synthetic data has gained

prominence in the paradigm of aligning pre-trained

LLMs via instruction fine-tuning, RLHF (Ouyang

et al., 2022), and instruction backtranslation (Li

et al., 2023b). Recently, in the context of pre-

training, synthetic data was used to generate

datasets such as Tiny Stories (Eldan and Li, 2023)

and Textbook quality synthetic data (Gunasekar

et al., 2023; Li et al., 2023c). These were used

to train smaller language models (like the Phi

model family) that were as performant as larger lan-

guage models on certain tasks. However, their data

generation process stays largely opaque, and pro-

hibitively expensive, requiring prompting a GPT-

3.5 model for generating billions of tokens. Addi-

tionally, such data generation can create “knowl-

edge bias” by generating data pertaining to tasks

that we want to perform well on. While synthetic

data has shown promise, it is unclear if this is be-
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cause of its higher quality, or strategic topic selec-

tion (Maini, 2023).

In this work, we propose Web Rephrase

Augmented Pre-training (WRAP)—that attempts

to bridge three important challenges stemming

from the ambiguity around data curation— (i) what

data should you pre-train on? (ii) how can you

pre-train with limited data? (iii) how can you pre-

train computationally efficiently? In particular, we

show that re-phrasing documents on the web using

an off-the-shelf medium size LLM allows models

to learn much more efficiently than learning from

raw text on the web, and accounts for performance

gains on out of distribution datasets that can not

be offset with additional web data. Our proposed

method involves using a pre-trained off-the-shelf

LLM to re-phrase documents from a web corpus

into different styles (Figure 1a).

In our work, we tackle two important challenges

faced during synthetic data curation in the works

of Gunasekar et al. (2023)—generation cost, and

data bias—by rephrasing articles on the web. (i)

WRAP allows for using an open source, and much

smaller LLM (1.8B/7B v/s GPT3.5) to rephrase

unstructured and poorly phrased documents in dif-

ferent styles, since it does not rely on the LLM

as a knowledge bank. (ii) Thanks to the informa-

tion maintaining nature of rephrasing, we are able

to leverage the natural diversity of the web rather

than relying on an LLM for information, which

may be prone to factual errors, and data biases.

WRAP shows that the “style” alone can result in

large gains in pre-training efficiency, and down-

stream performance.

Using WRAP on the C4, we evaluate model

performance on 13 different zero-shot tasks, and

21 different language modeling domains of the

Pile, and find that pre-training LLMs with syn-

thetic data allows us to train equivalent models

with 5x lesser data, or 3x lesser compute. In fact,

our models, also outperform the recent TinyLLama

models that were trained for 3 trillion tokens (10x

data and compute) across several zero-shot Q/A

tasks. We further observe a reduction in perplexity

by ∼ 50% on the Pile, and note that our 350M pa-

rameter model trained on combinations of real and

synthetic rephrases on just 15% of the entire C4

corpus, outperforms pre-training a 1.3B parameter

on the entire C4. Finally, we conduct an analysis on

the potential of data leakage, properties of synthetic

data styles, and how to combine synthetic data for

improving WRAP based LLM pre-training.

2 Related Work

Neural Scaling Laws for Language Models

Neural scaling laws relate the optimal number of

model parameters and amount of training data for

a fixed amount of compute. Hoffmann et al. (2022)

presented the Chinchilla scaling laws for language

models demonstrating that there was a linear re-

lationship between the size of the model and the

amount of training data needed. Their findings indi-

cated that prior models such as Gopher (Rae et al.,

2021) are severely undertrained. Recently, models

such as Llama (Touvron et al., 2023) are trained

with much more data. These scaling laws were

drawn for the paradigm of single-epoch training.

Recently, Muennighoff et al. (2023) showed that

the marginal utility of repeated data rapidly dimin-

ishes when training for more than 4 epochs, and

formulated scaling laws under repeated data. Con-

currently, Xue et al. (2023) showed that repeating

even small fractions of the pre-training data can

lead to overfitting and reduce model performance.

Dataset Selection Selecting high quality data for

pre-training LLMs remains an active, high-impact,

yet understudied area of research. For instance,

GPT-2 model was pre-trained on all outbound links

from Reddit, a social media platform, which re-

ceived at least 3 karma (Brown et al., 2020). This

was used as a heuristic indicator that the doc-

ument may be interesting, educational, or just

funny. Follow-up works have used other heuris-

tics such as prioritizing documents that resemble

wikipedia (Gururangan et al., 2022). Rae et al.

(2021) used multiple heuristic filters to remove doc-

uments, such as the absence of certain stopwords,

length of the document, percentage of alphabetic

characters, mean word length, symbol-to-word ra-

tio, percentage of lines starting with a bullet point,

or ending with an ellipsis etc. Their work high-

lights the intricacies of filtering out text data. An

alternative paradigm for building better datasets

for training is to distill high-quality datasets. Xie

et al. (2023) proposed a method, DoReMi, to se-

lect the best data mixture for pre-training language

models by reweighting data from various domains.

Concurrently, Abbas et al. (2023) showed that

de-duplicating pre-training data can improve pre-

training efficiency. Recently several methods were

proposed for automatic filtering of low-quality data

for faster fine-tuning of LLMs (Chen et al., 2023;

Solaiman and Dennison, 2021; Zhou et al., 2023).

Simultaneously, in the realm of image-language
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Figure 1: (a) WRAP: We prompt an off-the-shelf instruction-tuned model to rephrase articles on the web, and

pre-train an LLM on a mixture of real and synthetic data. (b) Zero-shot performance of GPT 1.3B models trained

on combinations of C4 and synthetic variations. (c) Weighted average perplexity over 21 sub-domains of the Pile

for varying model sizes and amount of pre-training data. Results in (b,c) use conversation Q/A style rephrasing.

models such as CLIP (Radford et al., 2021), the

Datacomp benchmark (Gadre et al., 2023) and re-

cent entries (Maini et al., 2023; Yu et al., 2023) de-

veloped approaches at filtering out low-quality sub-

sets from pre-training datasets like LAION (Schuh-

mann et al., 2022), or the common crawl.

Data Augmentation and synthetic data Eldan

and Li (2023) showed that a synthetically gener-

ated dataset in the form of stories that toddlers

can understand allows training a small language

model that can generate coherent sentences. Gu-

nasekar et al. (2023) showed that textbook quality

(synthetic) data alone helps models achieve state-

of-the-art performance on reasoning and coding

tasks. Similar approaches are used in concurrent

work for enhancing coding and mathematical rea-

soning abilities while finetuning (Liu et al., 2023a;

Wei et al., 2023). Shumailov et al. (2023) show

that training on synthetic data can actually be harm-

ful for model performance, especially when we

do multiple rounds of pre-training an LLM and

then training the next LLM on data generated by

the previous one. On the other hand, some other

works have shown that such a strategy can actu-

ally be useful. Li et al. (2023b) and Köksal et al.

(2023) discuss how a model can generate instruc-

tion data and then fine-tune on its own generated

data to improve performance. Jung et al. (2023)

discuss how such repeated cycles of synthetic data

can help train a very small paraphrase model that

outperforms GPT-3.

The vision and multimodal literatures have also

seen a surge of works examining the use of syn-

thetic data for training. The works of Bansal and

Grover (2023); Trabucco et al. (2023); Azizi et al.

(2023) have shown that using synthetic data in com-

bination with real data achieves state of art model

performance both in and out-of-distribution. Cubuk

et al. (2020) used generative models to generate

image augmentations for better domain generaliza-

tion. There are also multiple studies on increasing

multiplicity of augmentations and their value for

improving generalization (Choi et al., 2019; Fort

et al., 2021; Hoffer et al., 2020). However, Ale-

mohammad et al. (2023) showed that generated

models trained for more than five cycles of their

own generated data can undergo mode collapse.

3 WRAP: Web Rephrase Augmented

Pretraining

Generating synthetic data using an off-the-shelf

language model can be both computationally ex-

pensive and operationally challenging. Prior ap-

proaches to generating synthetic textbook quality

data using LLMs (Gunasekar et al., 2023) required

(1) a language model that contains sufficient world

knowledge to generate articles worth training on,

thereby increasing generation cost; (2) a careful

selection of prompts that enable generating high

quality, and diverse articles that fill any knowledge

gaps in the synthetic corpus. This challenge was

highlighted in follow-up work of Li et al. (2023c),

and has the potential of inadvertently creeping in

biases in the language models (Maini, 2023), as

opposed to those trained on the natural diversity

of the web. As a remedy to the challenge of (i)
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generation cost, and (ii) data diversity, we propose

WRAP that leverages the natural diversity of ar-

ticles on the web, allowing us to utilize signifi-

cantly smaller LLMs (than GPT-3.5) to generate

high-quality paraphrases of noisy and unstructured

articles on the web.

3.1 Rephrasing the Web

It has been observed in past work that up-weighting

high-quality data, such as texts from Wikipedia,

can be useful to improve language modeling.

These terms have generally been very loosely de-

fined and there is only anecdotal evidence of the

same (Brown et al., 2020; Wenzek et al., 2019).

At the same time, web data is deficient of text

in question-answering or conversational format,

which is a prominent use case of language mod-

els. Based on these two insights, we design our

rephrasing styles.

Rephrasing Styles In lieu of the anecdotal ev-

idence above, we attempt rephrasing documents

on the web in four different styles—(i) Easy

(text that even a toddler will understand); (ii)

Medium (in high quality English such as that found

on Wikipedia); (iii) Hard (in terse and abstruse

language); (iv) Q/A (in conversation question-

answering format). In order to operationalize

rephrasing in these stylistic variations, we appro-

priately prompt an instruction-tuned model. The

rephrased examples of these four styles and the

prompts templates used in our work are provided

in Appendix I.

Generating Synthetic Data Now, we detail how

we utilize an instruction-tuned language model to

rephrase texts from web-crawled datasets such as

C4 (Raffel et al., 2020) (which we use for all our

experiments). In particular, we use a frozen Mistral-

7B instruction-tuned model (Jiang et al., 2023) (see

Ablations in Section 7 for other models). To gen-

erate synthetic data in “medium” style, the Mistral

model is prompted using the following instruction:

“For the following paragraph give me a paraphrase

of the same in high-quality English language as in

sentences on Wikipedia”. The prompt was created

using iterative human feedback by comparing out-

puts of ‘medium’ sized LLMs with those of GPT-4.

We use the model output to create a parallel cor-

pus of “high-quality” synthetic data corresponding

to the original noisy web data. Each example is

chunked into sequences of nearly 300 tokens us-

ing the NLTK sentence splitter. This was based on

our empirical observation that asking an LLM to

rephrase more than 300 tokens often led to a loss of

information. They are later coalesced to pre-train

with a context length of 1024. Discussions on data

quality can be found in Section C.

Combining Real and Synthetic Data Our

method of re-phrasing web data naturally incor-

porates the information diversity found on the in-

ternet. However, it does not incorporate the noise

in real data. While synthetic data may help LLMs

pre-train faster, we also want them to be able to

understand noisy web text that may be filled with

typos and linguistic errors so that the LLMs do not

fail in user-facing situations. In order to incorpo-

rate this style diversity in language modeling, we

sample real and synthetic data in a 1:1 ratio. Note

that this means the same raw data is seen twice,

once in its original form, and once as its rephrase.

3.2 Implementation Details

Architecture We train decoder-only transformer

models (Vaswani et al., 2017) at three different

scales, small, medium and XL. The small-scale

(128M parameter) model consists of 12 layers, 12

attention heads, and a hidden dimension size of

768. The medium-scale (350M parameter) model

consists of 24 layers, 16 attention heads, and a hid-

den dimension size of 1024. The XL-scale (1.3B

parameter) model consists of 24 layers, 16 attention

heads, and a hidden dimension size of 2048. We

do not use dropout in either model and a maximum

sequence length of 1024. The models are trained

using NVIDIA’s Megatron-LM repository.

Pre-training We train all our XL models for a

total of 300k steps with a batch size of one mil-

lion tokens, unless otherwise specified. We use a

maximum learning rate of 3e−4 for the 128M, and

350M parameter models, and 2e−4 for the 1.3B

parameter model. The minimum learning rate is

1e−5. We use a weight decay of 0.01, along with

a gradient clipping norm of 1.0. We use cosine

learning rate scheduler with a warmup for 1% of

total steps; and Adam optimizer with β1 = 0.9 and

β2 = 0.999.

4 Perplexity Evaluation

We evaluate the perplexity of the pre-trained model

on the validation set of multiple out-of-distribution

datasets. All models are either trained on the C4

dataset (Raffel et al., 2020), or a particular stylistic
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Figure 2: WRAP (C4 + QA-85B) v/s C4: Comparison

of perplexity on the Pile for a 1.3B LLM trained for

300B tokens shows that WRAP outperforms models

trained on 2x real data.

rephrase of the same. All the evaluations are done

on 21 sub-domains of the Pile (Gao et al., 2020).

These subsets are created from the first 10,000 doc-

uments from each domain of the Pile dataset. We

then evaluate the perplexity of the model on these

subsets. Additional evaluation details are provided

in Appendix D. It is important to note that we eval-

uate perplexities on the Pile instead of C4. Training

on multiple distributions of text (synthetic and real

web) does comes at a marginal cost of less than 1

perplexity on the C4 validation set. To understand

our choice of evaluation, and why we observe this

perplexity increase, we note that training over the

C4 corpus corresponds to minimizing the objective

θc4 = min
θ

Ex∼Dc4
[L(θ;x)] , (1)

that attempts to exactly model the C4 web text. In

contrast, training over multiple styles corresponds

to minimizing the risk over a different distribution,

θWRAP = min
θ

Ex∼Dc4∪Dsyn
[L(θ;x)] . (2)

Solving for equation 2 does not minimize the

risk over C4-only, and hence the small drop in

performance between θc4 and θWRAP on the C4.

For meaningfully comparing models trained on the

C4 and on its synthetic rephrases, we evaluate their

generalization capability on 21 different domains

of the Pile (Gao et al., 2020). Results for each

domain are presented in Figure 2.

Data Complexity In Figure 1c, we show that

models trained for fewer tokens (150B) and even

smaller 350M models outperform training on the

full C4 for 300B tokens indicating faster learning

with synthetic rephrases. On some domains such as

ArXiv and HackerNews, we observe that training

with synthetic data allows reducing the perplexity

by nearly 3x of the perplexity of models trained on

real data alone. This suggests that in many cases it

may not be possible to offset the performance ad-

vantage of pre-training on synthetic data by merely

training on more real data. On an average of 21

subsets of the Pile, our models improve perplexity

by 50% over models trained on real data alone.

Learning Speed We observe that even at the

first checkpoint (10B tokens) of WRAP training,

the average perplexity of the LLM on the Pile is

lower than that achieved by pre-training on C4 for

15 checkpoints. This suggests a 15x pre-training

speed-up. We defer the discussion on learning

speed to ‘zero-shot’ tasks in order to make more

meaningful comparisons.

5 Zero-shot Tasks

We now evaluate our pre-trained language mod-

els on various zero-shot question answering (QA)

benchmarks using the LLM Evaluation Har-

ness1 (Gao et al., 2023).

5.1 Datasets

We evaluate our models on a total of 13 differ-

ent zero-shot benchmarks to assess their abilities

across various natural language tasks like common

sense reasoning, language and knowledge under-

standing and mathematical reasoning.

General Understanding The General Under-

standing category comprises datasets testing

broader cognitive skills and language comprehen-

sion. ARC Easy (ARC-E) (Clark et al., 2018) is

the less challenging counterpart of ARC-C, featur-

ing questions that require basic reasoning skills.

BoolQ (Clark et al., 2019) includes boolean ques-

tions that focus on reading comprehension and

general language understanding. Winogrande

(Wino.) (Sakaguchi et al., 2021) challenges mod-

els with common sense reasoning in language, par-

ticularly in pronoun disambiguation. PIQA (Bisk

et al., 2020) assesses understanding of physical pro-

cesses, an essential part of practical common sense.

HellaSwag (Zellers et al., 2019) tests the ability

to complete scenarios coherently, demanding both

language understanding and common sense. Truth-

fulQA (Lin et al., 2021) is centered on generating

truthful, accurate answers, thus testing the model’s

1We use git commit - 89618bf8 for consistency across all
experiments with a batch size of 32.
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factual correctness. OpenBookQA (OBQA) (Mi-

haylov et al., 2018) evaluates the understanding

of a broad range of facts and concepts. Finally,

LogiQA-2 (Liu et al., 2023b) assesses the model’s

capacity to comprehend logical principles.

Specialized Knowledge In the Specialized

Knowledge category, we include datasets that de-

mand expertise in specific domains. The ARC

Challenge (ARC-C) (Clark et al., 2018) contains

challenging science exam questions from grades 3

to 9, demanding advanced knowledge. SciQ (Jo-

hannes Welbl, 2017) provides science exam ques-

tions to test model understanding and reasoning

in the scientific domain. PubMedQA (Jin et al.,

2019) focuses on comprehension in biomedical

literature. MathQA (Amini et al., 2019) tests

mathematical problem-solving, requiring both nu-

merical comprehension and reasoning. Lastly,

MMLU (Hendrycks et al., 2021) spans multiple

domains, from professional to academic, testing

the model on specialized subjects.

5.2 Results

We compare the performance of a model trained on

a mixture of real and synthetic data with models

trained on various splits of real data. In all our

experiments, we use the C4 (Raffel et al., 2020)

dataset for rephrasing and producing splits of syn-

thetic data. We use the abbreviation ‘Real Tok.’ to

denote the number of tokens of web data available

for pre-training. In the ‘Synthetic + Real’ experi-

ments, we augment the same number of synthetic

rephrases. We choose ‘Real Tokens’ as the metric

of comparison because we can potentially rephrase

the same document multiple times, implying that

the total corpus size is not meaningful, and corpus

‘knowledge’ is the actual currency of interest.

Baselines Methods We pre-train LLMs of (i)

Half of C4, and the (ii) Full C4 corresponding to ap-

proximately 85 Billion and 170 Billion real tokens

respectively (Raffel et al., 2020). We also pre-train

our own models on (iii) 160 Billion and (iv) 320

Billion tokens of the RefinedWeb Dataset (Penedo

et al., 2023). We also compare with the (iv) Pythia-

1.4B model that was trained on the Pile (Gao et al.,

2020). This dataset is no longer publicly avail-

able, hence we utilize a pre-trained model. Finally,

we also compare with the recent (v) TinyLlama

model (Zhang et al., 2024) that was trained for 3

epochs on 1 Trillion tokens from SlimPajama (Shen

et al., 2023) and StarCoder (Li et al., 2023a).

General Improvements Across all tasks in Ta-

ble 1, we observe that models trained on synthetic

data combined with the C4 dataset (Synthetic+C4)

exhibit an overall higher average performance of

52.3% as compared to those trained solely on the

real C4 dataset with a 85B token split, which scored

an average of 50.2%. This shows that the inclusion

of synthetic data can enhance the general under-

standing capabilities of NLP models. Moreover,

even the TinyLLama model trained for 10x com-

pute and data, performs comparably to models

trained on real data only. This suggests that the

gains from filtering out, or adding more real data

are low. As opposed to this, WRAP shows that

pre-training on even small amounts of synthetic

data can contribute to large performance gains.

Specialized Knowledge Tasks The key message

from the results in Table 1 is that synthetic data

can not impart ‘new knowledge’. It can only help

pre-train faster, which was also the premise of our

work. In particular, we note several key findings:

1. Pre-training on larger datasets helps improve

performance, by presumably exposing the

LLM to more “knowledge”. For instance,

the Pythia (300B) model achieves an average

score of 43.4%, outperforming the smaller C4

(85B) dataset’s score of 42.1%.

2. Despite the advantages of a larger dataset, the

improvements saturate. For example, Refined-

Web (320B) model outperforms the Refined-

Web (160B) model by only 0.6%. Similary,

the TinyLlama model (1T tokens) performs

comparably to the WRAP model, which only

had 85B tokens of raw web data.

Specific Improvements We see maximum im-

provement in the TruthfulQA dataset, with the

Synthetic (85B) model scoring 44.0%, which is

significantly higher than any other model’s perfor-

mance on this dataset. This is potentially because

instruction-tuned LLMs already correct potential

misconceptions while rephrasing the text. Inter-

estingly, we notice how adding real data to the

synthetic model (Synthetic+C4) reduces the per-

formance on TruthfulQA by 4%, down to 40.5%,

indicating a potential dilution of the benefits gained

from synthetic data when combined with real data.

Other datasets such as HellaSwag, and BoolQ, for

which C4 trained models do well, continue to show

the benefits of incorporating combinations of C4

and synthetic rephrases.
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Dataset (Real Tok.) ARC-E BoolQ Wino. PIQA HellaSwag TruthfulQA OBQA LogiQA Avg

Half C4 (85B) 53.2 59.1 57.3 76.0 61.0 34.1 34.2 26.6 50.2

Full C4 (170B) 54.6 54.2 59.0 76.1 61.2 33.5 36.8 26.9 50.3

RW (160B) 58.0 60.7 57.5 74.9 59.4 36.8 35.2 26.8 51.2

RW (320B) 56.7 61.1 57.1 75.2 59.2 36.0 35.4 27.2 51.0

Pythia-Pile (300B) 53.9 63.3 57.5 71.0 52.0 38.9 33.2 27.3 49.6

TinyLlama (1T) 55.3 57.8 59.1 73.3 59.2 37.6 36.0 27.0 50.7

Synthetic (85B) 57.7 60.0 58.8 76.9 57.8 44.0 34.2 26.3 52.0

Synthetic+C4 (85B) 57.4 62.2 58.9 76.0 60.8 40.6 35.3 27.1 52.3

Dataset (Real Tok.) ARC-C SciQ PubMedQA MathQA MMLU Avg

Half C4 (85B) 29.5 76.8 57.2 22.9 24.2 42.1

Full C4 (170B) 29.7 77.3 57.4 23.8 23.9 42.4

RW (160B) 29.3 81.4 56.2 23.4 25.9 43.2

RW (320B) 30.0 83.1 57.4 23.0 25.4 43.8

Pythia-Pile (300B) 28.6 79.2 60.6 24.3 24.3 43.4

TinyLlama (1T) 30.1 81.8 61.4 23.7 25.8 44.6

Synthetic (85B) 32.3 78.4 60.2 23.2 24.6 43.7

Synthetic+C4 (85B) 31.5 79.0 61.5 23.5 24.8 44.0

Table 1: (Left) Evaluation of 1.3B parameter LLMs on “General Understanding Tasks” focusing on general

reasoning, language understanding, and common sense. (Right) Evaluation on ‘Specialized Knowledge Tasks’ that

require specific domain knowledge such as science and mathematics. Results for WRAP are averaged over 3 runs.

6 Rephrase Examples from C4 Corpus

We show one sample document from the C4 cor-

pus below, and then its corresponding rephrase in

Medium and Q/A style when using Mistral-7B as

the rephraser. More such examples are provided in

Appendix J. For the Medium style rephrasing, we

ask the LLM to rewrite the sentence in high quality

English such as Wikipedia, whereas for the Q/A

style rephrase, we ask the LLM to rewrite the docu-

ment in conversational question-answering format.

The detailed prompts are in Appendix I.

Original

First round on stress at work

survey. Answering the questionnaire

is voluntary and all answers will

be saved anonymously. Please fill

in this questionnaire only if you

have some work experience, part-or

full time. Otherwise, you will

not be able to answer some of the

questions! Here is a the link to

all language version.

Medium Style

In the initial stage of the

survey on work-related stress,

participation is optional, and all

responses will be kept confidential.

It is important to note that only

those with work experience, whether

part-time or full-time, will be

able to accurately respond to

certain questions. To complete

the questionnaire, please use the

following link, which is available

in multiple languages.
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Figure 3: Importance of High Quality Paraphraser:

Perplexity across all the Pile domains for WRAP on

data generated by different LLMs. Results show that

even small models like Qwen-1.8B can generate para-

phrases of high quality. Though, a low quality rephraser

like our fine-tuned T5-base model leads to worse PPL.

Q/A Style

Question: Is participating in the

stress at work survey mandatory?

Answer: No, it is voluntary.

Question: Will all answers be

saved anonymously? Answer: Yes,

they will. Question: Who is

eligible to take the questionnaire?

Answer: Only individuals with work

experience, whether part-time or

full-time. Question: What happens

if someone is not eligible to take

the questionnaire? Answer: They

will not be able to answer some

of the questions. Question: Can

you provide a link to all language

versions of the questionnaire?

Answer: Yes, here is the link.

7 Analysis and Ablations

We further ask the following Research Questions

(RQs) to investigate in a finer granularity how to

enhance performance optimally. We discuss addi-

tional data and method ablations in Appendix G.
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Figure 4: Importance of Real Data: Comparing per-

plexity on the Pile when pre-training on C4 with syn-

thetic data vs. synthetic data only. Models are 1.3B

parameters trained for a total of 150B tokens on a real

data subset containing 35 Billion tokens of the C4.

RQ1: How important is to have a high-quality

re-phraser? We use data from four distinct re-

phrasing models (T5-base (Raffel et al., 2020),

Qwen-1.8B-chat (Bai et al., 2023a), Mistral-7B-

chat (Jiang et al., 2023), and Vicuna-13B-chat-

v1.3 (Chiang et al., 2023)) and train a 345M model

for 30B tokens. We generate data from all mod-

els using the same prompt. In case of the T5-base

model, we finetune the model for 1 epoch on re-

phrase pairs from the Vicuna-13b-chat model. We

find that pre-training on data generated by smaller

re-phrase models like Qwen-1.8B and Mistral-7B

achieve lower perplexity than Vicuna 13B (Fig-

ure 3). At the same time, our fine-tuned T5-base

model performs significantly worse than the rest.

Even then, all rephrase models reduce perplexity

over only real C4 data. It remains an open ques-

tion to test the limits of how small can we train a

paraphrase model to generate high quality synthetic

data to further scale the applicability of WRAP.

RQ2: How important is it to have real C4 data?

Our findings in Tables 1 indicate that synthetic data

using the QA prompt are sufficient for strong per-

formance on QA tasks. However, when evaluated

on Pile perplexity, we observe significant degra-

dation in perplexity across many sub-domains in

Figure 4. This is likely because synthetic data is

very clean containing few special characters and

being highly structured. In contrast several sub-

domains of the Pile such as OWT, and Hackernews

have such special tokens. On domains such as

Philpapers and Gutenberg, we observe that drop-

ping real C4 text from the pre-training data, and

training on synthetic documents alone drops perfor-

mance significantly (increase in perplexity). This

is once again attributed to the fact that synthetic

data does not contain certain ‘tags’ and ‘styles’ that

are prevalent in real data scrapes, and emphasized

how WRAP is a better strategy than pre-training

on synthetic data alone. In terms of performance

on zero-shot tasks, the presence of real data helps

improve zero-shot performance in Tables 2. Since

these tasks contain well-written Q/A pairs, the ef-

fect is not as prominent as on Pile.

RQ3: Is there data leakage from the rephrase

model to the trained model? We investigate

whether our synthetic data maintains similar se-

mantic meaning while being stylistically different

from the original C4 data and matching the style

of different PILE domains. We start by compar-

ing pairs of examples of synthetic and real data to

confirm the performance gain is not attributed to

knowledge leakage from the rephrase models. We

subset the first 1000 samples from each dataset.

We show the cosine similarity of the sen-

tence embeddings from a pre-trained BERT model

trained with SimCSE objective (Gao et al., 2021)

for medium and qa prompts in Figure 5(a) and (b).

When computing similarity, we remove outliers.

Figures with distributions use a gaussian Kernel

Density Estimator (KDE) to construct distributions

for statistics from 1000 values. The cosine simi-

larity of real-synthetic pairs is higher than several

baselines including two random real samples from

C4, a continuation baseline which computes co-

sine between the first half of a sample and the full

sample, and cosine similarity between the first and

second half of the same sample. High similarity in-

dicates that re-phrases maintain similar meaning to

their real counterparts without adding information.

8 Conclusion

Strong language models are being pre-trained on

combinations of real and synthetic data. Using syn-

thetic data enables baking in desirable attributes

such as fairness, bias, and style (like instruction

following) directly into the data, eliminating the

need to adjust the training algorithm specifically.

This offers an alternative approach to aligning lan-

guage models to human values. The recent uptick

in interest around synthetic data, especially for

instruction-tuning language models, is noteworthy,

with concurrent researchers also leveraging it for

pre-training. As we transition into this paradigm,

understanding the properties of the data fed to our

models is paramount. This paper aims to be a

comprehensive guide on employing different syn-
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Dataset (Real Tok.) ARC-E BoolQ Wino. PIQA HellaSwag TruthfulQA OBQA LogiQA Avg

Med+C4-35B 53.2 57.0 55.7 74.8 57.6 36.5 33.2 26.2 49.3

QA+C4-35B 55.1 63.3 55.7 75.6 57.9 41.4 34.0 26.1 51.1

Med-35B 49.6 59.5 53.4 73.4 52.7 36.3 32.2 26.0 47.9

QA-35B 55.9 62.0 53.9 76.9 54.7 43.0 34.0 27.7 51.0

Dataset (Real Tok.) ARC-C SciQ PubMedQA MathQA MMLU Avg

Med+C4-35B 29.6 74.3 46.2 22.9 25.2 39.6

QA+C4-35B 30.3 76.8 62.2 23.0 26.1 43.7

Med-35B 28.8 73.8 59.4 22.6 24.7 41.9

QA-35B 31.1 77.4 59.2 22.4 25.0 43.0

Table 2: Importance of Real Data: (Left) Evaluation of ∼ 1.3B parameter LLMs trained for 150B tokens on

General Understanding Tasks. (Right) Evaluation on Specialized Knowledge tasks. Results show that adding real

data helps improve model performance when pre-training on ‘Medium’ or ‘Wikipedia-style’ paraphrases.
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(a) Cosine similarity Medium synthetic data
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(b) Cosine similarity QA synthetic data

Figure 5: Comparison between synthetic and real data from the C4 corpus showing that synthetic data maintains

semantic meaning compared with the real C4 data and primarily changes style for (a) medium rephrases of C4, and

(b) QA rephrases of C4.

thetic style data in LLM pre-training. We delve

into its significance from two vantage points: (1) In

scenarios with scarce high-quality data, synthetic

rephrases offer more value than mere repetition

of existing data; (2) Synthetic data can be a boon

for generalization on different text domains, and

for generating text in styles that are underrepre-

sented in the pre-training dataset. As practitioners

generate synthetic data for training models, they

will be faced with important and expensive design

choices—(i) How important is the quality of the

synthetic data generator?; (ii) How to balance real

and synthetic data? (iii) When does training on syn-

thetic data reach a point of diminishing returns? We

take a first step towards answering these questions.

9 Limitations

9.1 Cost Analysis

Should you generate synthetic data, or just train

longer on real data?

The applications of WRAP lies in both

paradigms—(i) low-resourced data settings such as

a language model for Finnish language (Luukko-

nen et al., 2023), and (ii) data-rich settings such as

training on the common crawl. In the former, there

is no alternative option of naively gathering more

data, and hence, synthetic data is a natural solu-

tion that should outperform training on in-domain

data alone. However, there is a significant interest

in training language models on English, or more

broadly, general web data. Is using synthetic data a

viable option even in this paradigm?

Before, we dive into the feasibility of pre-

training on synthetic data, we should acknowl-

edge the results of Table 1. The TinyLlama model

trained for 3 Trillion tokens also underperforms a

model jointly trained on real and synthetic data. In

fact, it performs quite comparably to the models

that were trained for 300B tokens on just real data

as well. This suggests that the ceiling for improve-

ment by training for longer may not be that high

(for a model of size 350M/1.3B parameters; larger

models may benefit from training for longer).

To analyze this cost trade-off, we compare the

cost of generating synthetic data, versus that of

training a language model on extra data. For our

synthetic data generation experiments, we use the

vLLM (Kwon et al., 2023) library for fast gener-

ation. In particular, we are able to generate 3M

tokens per hour on a single A100 when using the

Mistral-7B. Generating 85B tokens (as in our work)

accounts for about 25K GPU hours.

In comparison, on 64 A100s, we achieve a

throughput of 0.5M tokens per second. Assuming

training for 300B tokens, would mean 256 GPU

days, accounting for about 6k GPU hours to train
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a single model. On the contrary, training a 13B

model would take about 30K GPU hours. At the

scale of training a 13B model, reducing the training

cost by 3-10x can incorporate the cost overhead of

training with synthetic data in a single run.

While the cost of generating high quality data

is still relatively high, two important sources of

improvement impact this cost analysis. First, if we

use the Qwen-1.8B model (Bai et al., 2023b) for

rephrasing, we are able to get a 3x higher token

throughput. As seen in our preliminary results in

Fig 3, the model pre-trained on rephrases generated

by Qwen model performs comparably to that by

the Mistral model. This reduces the cost of gen-

eration by 3x. More recent work in speculative

decoding (Liu et al., 2023c) and optimized infer-

ence (Xia et al., 2024) suggest that we can leverage

another 3-5x improvement in the generation cost.

Hence, indeed, even at the scale of just 1.3B param-

eter model training, we can already improve upon

the cost of pre-training using just real data.

Two additional important advantages of syn-

thetic data generation that could not be accounted

for in the discussion above:

1. The cost of synthetic data generation is a one-

time investment, and we may train many mod-

els of varying scales once data is generated.

2. Data generation is 100% parallelizable,

whereas training requires the availability of a

big cluster with fast inter-node connectivity.

This is much more expensive. On the other

hand, generation can be thought of as a side

process that can fill in the empty GPUs in

any large-scale compute cluster, and runs on

single GPU machines.

9.2 Diversity of Synthetic Generations

Another limitation is enforcing the diversity in the

generated data. This diversity comes from both the

“style” and the “knowledge” contained in the gener-

ated data. Recent works (Li et al., 2023b,c) used a

selection of topics, or scenarios to seed the model

to generate novel texts. Still, a recent study by Pad-

makumar et al. (2023) showed that using language

models for AI-assisted writing tends to reduce con-

tent diversity, particularly when using instruction-

tuned models. While we used the paradigm of

rephrasing specifically to mitigate the issues per-

taining to the diversity of novel content generation,

it remains for future work to assess the presence

(or lack of) and impact of content diversity in para-

phrase models. This concern further extends to the

experimental limitation of this work on English lan-

guage. In future work, it remains to explore diverse

data generation for under-represented languages.
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A Dataset Details

A.1 Training Dataset

The primary pretraining corpus in our experiments

is Colossal Clean Crawled Corpus (C4), a curated

English text dataset comprising over 170 billion to-

kens. This corpus is derived from CommonCrawl,

a common practice in the pretraining of LLMs

(Brown et al., 2020; Raffel et al., 2020; Touvron

et al., 2023). This data source is also prominently

featured in openly available LLM pretraining cor-

pora, including The Pile (Gao et al., 2020) and

RedPajama (Computer, 2023). There are different

versions of CommonCrawl data and our selection

of C4 for pretraining is driven by driven by its size

and quality.

We also compare with pre-training on the Re-

fined Web corpus (Penedo et al., 2023). The

dataset is also derived from the CommonCrawl,

however has a more stringent filtering process. Our

selection of Refined Web is for comparing syn-

thetic rephrases to high quality subsets of web

data, which were shown to achieve similar per-

formance compared with curated datasets (Penedo

et al., 2023). For our experiments we used the first

3050 files and train for 300B tokens to match train-

ing on C4. We aso conduct experiments with the

first 1650 files to account for multiple epochs on

the Refined Web dataset.

A.2 Pile Perplexity Evaluation

For the evaluation phase, we employed 20 sub-

sets from the Pile corpus. We excluded the Eu-

roparl subset because it contained non-English lan-

guage. The subsets used are: CC, StackExchange,

Wikipedia, GitHub, PubMed Abstracts, Open-

webtext2, Freelaw, Math, NIH, USPTO, Hack-

ernews, Enron, Books3, PubMed Central, Guten-

berg, Arxiv, Bookcorpus2, Opensubtitles, Youtube-

subtitles, Ubuntu, and Philpapers. We take the first

10000 samples from each subset and split into doc-

uments of maximum length 1024. The reported

average in all perplexity plots is a weighted aver-

age over the perplexity of all domains according to

the ratios in Table 3.

A.2.1 Pile Weighted Average Ratios

We report the ratios for samples according to the

first 10,000 documents from our Pile validation set

in Table 3. Note that there are some slight varia-

tions in the ratios compared with those reported in

(Gao et al., 2020), but most ratios are similar.

Dataset Our Ratio (%) Ratio (%)

ArXiv 10.4 9.0

BookCorpus2 0.8 0.8

Books3 11.8 12.1

Pile-CC 14.0 18.11

Enron 0.1 0.1

EuroParl 1.1 0.7

FreeLaw 5.3 6.1

Github 10.9 7.6

Gutenberg 1.5 2.2

Hackernews 0.6 0.6

Dm Mathematics 2.0 1.2

NIH 0.2 0.3

OpenSubtitles 1.3 1.6

OpenWebText2 8.2 10.0

PhilPapers 0.7 0.4

PubMed Abstracts 0.7 3.1

PubMed Central 14.9 14.4

StackExchange 5.8 5.1

Ubuntu 1.3 0.9

USPTO 2.7 3.7

Wikipedia 3.4 1.5

YoutubeSubtitles 0.6 0.6

Table 3: Pile ratios for our evaluation compared with

published ratios.
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A.3 Zero-shot Evaluation Dataset

We evaluate our models on a total of 13 differ-

ent zero-shot benchmarks to assess their abilities

across various natural language tasks. These bench-

marks are categorized into two subsets: Specialized

Knowledge and General Understanding.

Specialized Knowledge This subset comprises

datasets that focus on domain-specific knowledge

and expertise.

• ARC Challenge (ARC-C): This dataset

is part of the AI2 Reasoning Challenge

(ARC) (Clark et al., 2018), containing science

exam questions from grades 3 to 9. The ARC

Challenge set includes more difficult ques-

tions that necessitate higher-order reasoning.

• SciQ: A dataset of science exam questions,

specifically designed to evaluate the ability of

NLP models in understanding and reasoning

within the scientific domain (Johannes Welbl,

2017).

• PubMedQA: This dataset focuses on biomed-

ical literature and is designed to evaluate

the understanding of medical and healthcare-

related information (Jin et al., 2019).

• MathQA: This dataset challenges models

in mathematical problem-solving, requiring

both numerical understanding and reasoning

skills (Amini et al., 2019).

• MMLU: Multi-domain question answering,

MMLU assesses the model’s expertise over

a wide range of specialized subjects, from

professional domains to academia (Hendrycks

et al., 2021).

General Understanding This subset contains

datasets that test general cognitive skills, language

understanding, and common sense reasoning.

• ARC Easy (ARC-E): The Easy set of the AI2

Reasoning Challenge (Clark et al., 2018) fea-

tures questions from the same source as ARC-

C but are considered less challenging and do

not require as advanced reasoning skills.

• BoolQ: A dataset consisting of boolean

(yes/no) questions, focusing on reading com-

prehension and general understanding of nat-

ural language text (Clark et al., 2019).

• Winogrande (Wino.): This dataset chal-

lenges models on common sense reasoning

in a language context, focusing on pronoun

disambiguation tasks (Sakaguchi et al., 2021).

• PIQA: Physical Interaction Question Answer-

ing tests the understanding of everyday physi-

cal processes, an aspect of practical common

sense (Bisk et al., 2020).

• HellaSwag: This dataset evaluates a model’s

ability to complete scenarios in a contextually

and logically coherent manner, requiring both

language understanding and common sense

reasoning (Zellers et al., 2019).

• TruthfulQA: Focused on the generation of

truthful, accurate answers, this dataset chal-

lenges models on their ability to discern and

reproduce factually correct information (Lin

et al., 2021).

• OpenBookQA (OBQA): OpenBookQA re-

quires understanding a wide array of facts

and concepts, thereby evaluating the model’s

broader knowledge and reasoning skills (Mi-

haylov et al., 2018).

• LogiQA-2: This dataset involves logical rea-

soning, testing the model’s capability to un-

derstand and apply logical constructs and prin-

ciples (Liu et al., 2023b).

Each dataset in these subsets is carefully selected

to challenge and evaluate specific aspects of natural

language processing models, ranging from domain-

specific knowledge in science, medicine, and math-

ematics, to broader skills like common sense rea-

soning and general language understanding.

B Filtering Details for Synthetic Data

When generating synthetic paraphrases using lan-

guage models, we occasionally encounter the chal-

lenge of extraneous introductions in the generated

outputs. Such paraphrases might commence with

phrases like "Here’s a paraphrase...", "The follow-

ing..." or even contain keywords such as "high-

quality English". To mitigate this, we’ve developed

a method to filter and refine the synthetic outputs.

B.1 Methodology

The primary function, remove_unwanted_part,

starts by splitting the input data into individual

sentences. If the first sentence contains delimiters
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such as "\n\n" (indicating a new paragraph) or ":",

the function checks the segment preceding the de-

limiter for the aforementioned unwanted elements.

If these elements are detected, the preceding seg-

ment is removed. The entire revised content is

then reconstructed and returned. In cases where

no modifications are applicable, but we still have

the flagged keywords, we remove the paraphrase

completely. To achieve this:

1. Split the input data into individual sentences

using the NLTK’s sentence splitter function.

2. Examine the first sentence for the presence of

delimiters.

3. If a delimiter is detected, check the preceding

segment for unwanted elements.

4. If unwanted elements are found, discard the

preceding segment (before an occurrence of

"\n\n" or ":").

5. Modify and return the filtered paragraph.

Based on manual inspection we found that the

error rate (occurrence of sentences with unwanted

elements) after the modification is less than 0.1%.

C Properties of Synthetic Corpus

To understand the properties of synthetic data gen-

erated from the rephrase model that lead to better

pre-training performance, we compare the seman-

tic similarity, syntactic complexity, and diversity

between synthetic data, C4 data, and data from the

Pile. Our primary focus is answering the follow-

ing questions about synthetic data: (i) Do models

trained on synthetic data perform better due to in-

formation leakage from the rephrase model? (ii)

Does the rephrase model accurately capture mul-

tiple styles? (iii) What attributes of synthetic data

make it high quality? Our investigation helps ad-

dress what data is beneficial for better generaliza-

tion to specific domains, and quantify the impor-

tance of data variability and quality.

C.1 Experimental Setup

We take a subset of the first 1000 documents from

each of the datasets. For synthetic comparisons

with real C4 data, we take pairs of samples, while

for Pile subsets, we take the first 1000 samples

from the test subset. When computing dataset qual-

ity statistics, we remove outliers more than two

standard deviations in metric value. When the num-

ber of samples from the Pile subset was fewer than

1000, we split samples. Figures with distributions

use a Gaussian Kernel Density Estimator (KDE)

to construct distributions for statistics from 1000

values.

C.2 Semantic Properties

In Section 7, we compared pairs of examples of

synthetic and real data to confirm the performance

gain is not attributed to knowledge leakage from the

rephrase models using a pre-trained BERT model

trained with SimCSE objective (Gao et al., 2021)

for medium and qa prompts in Figure 5(a) and (b).

We additionally compare the similarity of synthetic

rephrases and actual rephrases using the MRPC

corpus in Figure 6(c). We denote this additional

comparison by RealP (real paraphrase), while main-

taining comparison of splits of the sentence: R1

and R2. Synthetic rephrases have similar cosine

similarity on average and lower spread compared

with true rephrases according in the MRPC corpus.

As the semantic information is similar between

C4 and our synthetic data, we further investigate

stylistic differences in the data. Figure 7(a) shows

the Flesch–Kincaid reading levels for different

rephrase styles, and the Pile. Our findings indi-

cate that C4 is on the low end of reading level (7-8).

In contrast, medium increases the reading level to

10, and qa synthetic variants further reduces the

reading level to 6. Medium synthetic data matches

the reading level of Wikipedia, and other high read-

ing level datasets yielding better performance on

these domains. On QA synthetic data, we observe

reduced reading level. This is because we observed

that sentences are typically split into question and

answer leading to shorter setnences compared with

in the original text and medium style rephrases.

This leads to lower metric values for many of the

metrics. For type token ratio, we note that the di-

versity is quite similar between medium and most

subsets of the Pile. The QA dataset has particularly

low TTR matching ubuntu, github, and math as

these are more similar to QA format datasets and

have heavy repetition of the Question, and Answer

format.

C.3 Syntactic Properties

Finally, we compare the mean tree depth (mea-

sured by the mean over setences of the depth of the

dependency tree), and mean dependency distance

(measured as the average dependency distance of

14060



0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0

1

2

3

4

5

6

7

8

De
ns

ity

Real-RealP
Real-Para
Real-Real'
R1-R2
R1-Real
RP1-Real
R1-RealP

Figure 6: Cosine similarity medium synthetic MRPC rephrases

M
ed Q
A C
4

St
ac

kX
W

ik
i

C
C

G
ith

ub
Pu

bm
ed

-A
O

W
T2

Fr
ee

La
w

M
at

h
N

IH
U

SP
TO

H
N

ew
s

E
nr

on
B

oo
ks

Pu
bm

ed
-C

PG
-1

9
Ar

Xi
v

B
oo

ks
2

O
pe

nS
ub

s
Yo

ut
ub

e
U

bu
nt

u
Ph

il

0.0

2.5

5.0

7.5

10.0

12.5

15.0

R
ea

di
ng

 L
ev

el

(a) Flesch-Kincaid Reading Level

M
ed Q
A C
4

St
ac

kX
W

ik
i

C
C

G
ith

ub
Pu

bm
ed

-A
O

W
T2

Fr
ee

La
w

M
at

h
N

IH
U

SP
TO

H
N

ew
s

E
nr

on
B

oo
ks

Pu
bm

ed
-C

PG
-1

9
Ar

Xi
v

B
oo

ks
2

O
pe

nS
ub

s
Yo

ut
ub

e
U

bu
nt

u
Ph

il

0.0

0.2

0.4

0.6

Ty
pe

 T
ok

en
 R

at
io

(b) Type token ratio

Figure 7: Comparison of readability and diversity (ttr) of synthetic data compared with C4 and different subsets of

the Pile.

any pair of words within a sentence) in Figure 8,

which have been shown to be good measures of syn-

tactic difficulty (Futrell et al., 2015; Gibson et al.,

2000; Oya, 2021). We find similar trends as for

reading level and TTR diversity where mediums

tyle increase depth, mdd, and syntactic complexity

in general. We find again that QA style reduces

this complexity.

D Evaluation Metrics

The metric utilized for evaluation is the macro to-

ken level perplexity. Given a batch of encoded texts,

the perplexity at the token level was computed as

follows:

Given the accumulated loss over the entire

dataset, denoted as L, and the total number of

tokens, represented by T , the macro token-level

perplexity, denoted as P , is calculated as:

P = exp

(

min

(

20,
L

T

))

(3)

Where:

• exp is the exponential function.

• L is the cumulative loss over all shifted logits

and labels in the dataset.

• T is the total number of tokens in the dataset.

The value of 20 acts as an upper limit to stabilize

the metric in cases of high loss values.

E Limitations

E.1 Cost Analysis

Should you generate synthetic data, or just train

longer on real data?
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Figure 8: Comparison between synthetic and real data from the C4 corpus showing that synthetic data have higher

syntactic complexity indicated by higher average tree depth, and higher mean dependency distance (MDD).

The applications of WRAP lies in both

paradigms—(i) low-resourced data settings such as

a language model for Finnish language (Luukko-

nen et al., 2023), and (ii) data-rich settings such as

training on the common crawl. In the former, there

is no alternative option of naively gathering more

data, and hence, synthetic data is a natural solu-

tion that should outperform training on in-domain

data alone. However, there is a significant interest

in training language models on English, or more

broadly, general web data. Is using synthetic data a

viable option even in this paradigm?

Before, we dive into the feasibility of pre-

training on synthetic data, we should acknowl-

edge the results of Table 1. The TinyLlama model

trained for 3 Trillion tokens also underperforms a

model jointly trained on real and synthetic data. In

fact, it performs quite comparably to the models

that were trained for 300B tokens on just real data

as well. This suggests that the ceiling for improve-

ment by training for longer may not be that high

(for a model of size 350M/1.3B parameters; larger

models may benefit from training for longer).

To analyze this cost trade-off, we compare the

cost of generating synthetic data, versus that of

training a language model on extra data. For our

synthetic data generation experiments, we use the

vLLM (Kwon et al., 2023) library for fast gener-

ation. In particular, we are able to generate 3M

tokens per hour on a single A100 when using the

Mistral-7B. Generating 85B tokens (as in our work)

accounts for about 25K GPU hours.

In comparison, on 64 A100s, we achieve a

throughput of 0.5M tokens per second. Assuming

training for 300B tokens, would mean 256 GPU

days, accounting for about 6k GPU hours to train

a single model. On the contrary, training a 13B

model would take about 30K GPU hours. At the

scale of training a 13B model, reducing the training

cost by 3-10x can incorporate the cost overhead of

training with synthetic data in a single run.

While the cost of generating high quality data

is still relatively high, two important sources of

improvement impact this cost analysis. First, if we

use the Qwen-1.8B model (Bai et al., 2023b) for

rephrasing, we are able to get a 3x higher token

throughput. As seen in our preliminary results in

Fig 3, the model pre-trained on rephrases generated

by Qwen model performs comparably to that by

the Mistral model. This reduces the cost of gen-

eration by 3x. More recent work in speculative

decoding (Liu et al., 2023c) and optimized infer-

ence (Xia et al., 2024) suggest that we can leverage

another 3-5x improvement in the generation cost.

Hence, indeed, even at the scale of just 1.3B param-

eter model training, we can already improve upon

the cost of pre-training using just real data.

Two additional important advantages of syn-

thetic data generation that could not be accounted

for in the discussion above:

1. The cost of synthetic data generation is a one-

time investment, and we may train many mod-

els of varying scales once the data is gener-

ated.

2. Data generation is 100% parallelizable,

whereas training requires the availability of a

big cluster with fast inter-node connectivity.

This is much more expensive. On the other

hand, generation can be thought of as a side

process that can fill in the empty GPUs in

any large-scale compute cluster, and runs on

single GPU machines.

E.2 Diversity of Synthetic Generations

Another limitation is enforcing the diversity in the

generated data. This diversity comes from both the
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“style” and the “knowledge” contained in the gener-

ated data. Recent works (Li et al., 2023b,c) used a

selection of topics, or scenarios to seed the model

to generate novel texts. Still, a recent study by Pad-

makumar et al. (2023) showed that using language

models for AI-assisted writing tends to reduce con-

tent diversity, particularly when using instruction-

tuned models. While we used the paradigm of

rephrasing specifically to mitigate the issues per-

taining to the diversity of novel content generation,

it remains for future work to assess the presence

(or lack of) and impact of content diversity in para-

phrase models.

F Additional Results for Smaller Model

and Token Sizes

F.1 Results for 350M Models Trained for 75B

Tokens
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Figure 9: Perplexity across all domains of the Pile com-

paring combining multiple styles of synthetic data. Mod-

els are 350M parameters trained for a total of 75B to-

kens.

We train models at smaller scales and demon-

strate improvement. In particular we train a 350M

GPT-2-medium architecture for a total of 75B to-

kens. We show Pile perplexity averaged across

the 21 domains is much lower than for that of the

model trained only on C4 in Figure 9, and even

lower than 1.3B models trained only on C4 in Fig-

ure 1c. We also show an increase of 2% across

general understanding language tasks, and roughly

2− 3% on specialized knowledge tasks in Table 4

when adding QA rephrases. We also experimented

with medium rephrases at this smaller scale. Our

findings indicate that the high quality provided by

medium rephrases improves performance over only

C4, however matching the style as indicated by

QA rephrase performance further improves perfor-

mance.

F.2 Results for 1.3B Models Trained for 150B

Tokens

We additionally train 1.3B GPT-2-XL models at

150B tokens, reducing the number of steps by half.

We show Pile perplexity averaged across the 20

domains is much lower than for that of the model

trained only on C4 in Figure 10, and even lower

than 1.3B models trained only on C4 in Figure 1c

for twice as long. We also show an increase of 2%
across specialized knowledge tasks, and roughly

2% on general understanding tasks in Table 5 when

adding QA rephrases. We also experimented with

medium rephrases at this smaller scale, and report

similar findings consistent with other small-scale

experiments.
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Figure 10: Perplexity across all domains of the Pile

comparing combining multiple styles of synthetic data.

Models are 350M parameters trained for a total of 75B

tokens.

G Ablations

We further ask the following Research Questions

(RQs) to investigate in a finer granularity for how

to enhance performance with synthetic data.

G.1 Data Combination Analysis

RQ4: Does a combination of multiple synthetic

datasets improve performance? We measure

the impact of combining multiple synthetic styles

with C4 for training. We consider two variants:

combining in a 1:1 ratio meaning that there are two

copies of C4 to match two synthetic styles (medium

and QA), and 1:2 ratio which combines only one

instance of the C4 dataset. For zero-shot QA tasks,

our finding in Table 6 indicate lower performance

than combining only QA and C4 data. Evaluations

over the Pile are shown in Figure 11. We notice

that both the ‘Q/A’ and ‘Wikipedia’ paraphrases

help improve performance on certain domains. For

example, ‘Stackexchange’, that has lots of question-

answers benefits from the presence of synthetic
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Dataset (Real Tok.) ARC-E BoolQ Wino. PIQA HellaSwag TruthfulQA OBQA LogiQA Avg

C4-18B 43.7 52.8 53.0 70.1 43.9 37.8 29.6 26.5 44.7

C4-75B 43.9 53.4 51.6 71.2 44.2 39.0 29.6 25.7 44.8

QA+C4-18B 47.3 60.7 52.2 71.2 44.6 40.0 31.0 26.3 46.7

Med+C4-18B 43.6 57.3 53.6 70.8 43.4 36.9 31.0 26.2 45.4

Dataset (Real Tok.) ARC-C SciQ PubMedQA MathQA MMLU Avg

C4-18B 25.3 66.6 50.6 22.0 23.1 37.5

C4-75B 24.3 66.8 46.4 22.1 23.0 36.5

QA+C4-18B 27.3 69.8 56.0 21.4 22.9 39.5

Med+C4-18B 6.1 67.6 53.6 21.7 23.1 38.4

Table 4: Medium Sized Model Evaluation: (Left) Evaluation of 350M parameter LLMs trained for 75B tokens

on General understanding Tasks. This table shows the performance across various datasets, focusing on general

reasoning, language understanding, and common sense comparing training. (Right) Evaluation Specialized Knowl-

edge Tasks. This table presents the performance on tasks that require specific domain knowledge such as science,

medicine, mathematics, and logic.

Dataset (Real Tok.) ARC-E BoolQ Wino. PIQA HellaSwag TruthfulQA OBQA LogiQA Avg

C4-35B 51.6 55.2 56.1 75.2 58.2 36.0 33.6 27.8 49.2

C4-150B 52.2 54.4 56.4 75.6 58.6 34.3 35.8 27.1 49.3

Med+C4-35B 53.2 57.0 55.7 74.8 57.6 36.5 33.2 26.2 49.3

QA+C4-35B 55.1 63.3 55.7 75.6 57.9 41.4 34.0 26.1 51.1

Dataset (Real Tok.) ARC-C SciQ PubMedQA MathQA MMLU Avg

C4-35B 28.0 74.3 55.0 22.0 24.3 40.7

C4-150B 28.5 75.8 55.4 22.6 25.4 41.5

Med+C4-35B 29.6 74.3 46.2 22.9 25.2 39.6

QA+C4-35B 30.3 76.8 62.2 23.0 26.1 43.7

Table 5: Left) Evaluation of ∼ 1.3B parameter LLMs trained for 150B tokens on General Understanding Tasks.

This table shows the performance across various datasets, focusing on general reasoning, language understanding,

and common sense comparing training . Right Evaluation on Specialized Knowledge Tasks. This table presents the

performance on tasks that require specific domain knowledge such as science, medicine, mathematics, and logic.
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Figure 11: Combining multiple styles: Perplexity

across all domains of the Pile comparing combining

multiple styles of synthetic data. Models are 1.3B pa-

rameters trained for a total of 150B tokens. We see

small perplexity improvements from combining multi-

ple styles.

data in Q/A style. Overall, we note that there is a

small improvement on the average perplexity on

the Pile by combining multiple styles.

G.2 Method Ablations

RQ5: Does synthetic data improve over augmen-

tations? Are the gains observed by pre-training

on synthetic data the same as pre-training with aug-

mentations? In order to test this, we consider two

popular text augmentation baselines—synonym

replacement and random deletion using the NL-

Augmenter library (Dhole et al., 2021). We pre-

train a 350M parameter model for 15B tokens in

order to conduct this set of experiments. The to-

tal pool size is only about 1.5B tokens, meaning

that the model would have to repeat data around

10 times during the pre-training phase, unless aug-

mented over. As seen in the perplexity analysis
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Figure 12: Is re-phrasing same as any augmenta-

tion? We compare perplexity on the Pile for different

augmemntation strategies. 350M parameter models are

trained for a total of 15B tokens. WRAP (Medium +

C4) performs significantly better than traditional aug-

mentations.

in Figure 12, the models trained on augmented

data perform significantly worse than those trained

on combinations of real and synthetic data. This

suggests that synthetic data enhances the learning

process, and is not merely another form of augmen-

tation.

RQ6: How does the style of synthetic data im-

pact performance on specialized domains? We

compare the performance of various models trained

on different styles of synthetic data. In particu-

lar, we generate four styles of synthetic data (easy,

medium, hard, and Q/A) and evaluate the perfor-

mance of training on combinations of each style

across Pile subsets. The prompts to generate these

synthetic data styles are outlined in Appendix I. Re-

sults corresponding to generations from a Vicuna-

v1.3 model, and for a 128M model trained for 3B

tokens are summarized in Figure 13. We see that
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Dataset (Real Tok.) ARC-E BoolQ Wino. PIQA HellaSwag TruthfulQA OBQA LogiQA Avg

Med+C4-35B 53.2 57.0 55.7 74.8 57.6 36.5 33.2 26.2 49.3

QA+C4-35B 55.1 63.3 55.7 75.6 57.9 41.4 34.0 26.1 51.1

Combined-1:1-35B 53.7 60.2 57.7 75.1 56.9 40.2 34.2 26.3 50.5

Combined-1:2-35B 54.3 62.0 57.0 75.6 58.2 39.5 36.2 25.4 51.0

Dataset (Real Tok.) ARC-C SciQ PubMedQA MathQA MMLU Avg

Med+C4-35B 29.6 74.3 46.2 22.9 25.2 39.6

QA+C4-35B 30.3 76.8 62.2 23.0 26.1 43.7

Combined-1:1-35B 30.9 77.1 61.2 23.0 23.9 43.2

Combined-1:2-35B 29.6 76.7 57.4 23.6 23.1 42.1

Table 6: Combining multiple styles: (Left) Evaluation of ∼ 1.3B parameter LLMs trained for 150B tokens on

General Understanding Tasks. (Right) Evaluation of the same model on Specialized Knowledge Tasks. Results

suggest that combining rephrasing styles does not yield performance benefit on zero-shot tasks compared to just

Q/A style.
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Figure 13: Impact of style of synthetic rephrases:

Perplexity across all domains of the Pile comparing dif-

ferent styles of synthetic data. We train 128M parameter

models for 3B tokens.

training with combinations of real C4 and synthetic

data matching the style of the domain at evalu-

ation improves performance. However, we find

that no single synthetic data style performs the

best across all domains, resulting in similar perfor-

mance across training with combinations of real C4

data and each synthetic style variant. While know-

ing the best synthetic style to pre-train an LLM is

impractical, an oracle that selects the best synthetic

style across all domains will improve perplexity by

16%—indicating the importance of training with

diverse data styles for LLM generalization, even

when the underlying knowledge stays the same.

H LLM Leaderboard Few-shot Results

In our main experiments in Section 4 we demon-

strate that LLMs trained with synthetic rephrases

are a better backbone for zero-shot question-

answering tasks as the model learns the question-

answer format and style during pre-training. In

this section, we show that improvements from pre-

training on synthetic rephrases are still present even

in few-shot settings where the model has access

to test samples. To study few-shot performance,

we evaluate on six tasks present in the OpenLLM-

Leaderboard2:

2
https://huggingface.co/spaces/HuggingFaceH4/

open_llm_leaderboard

1. ARC-Challenge (25 shot)

2. HellaSwag (10 shot)

3. MMLU (5 shot)

4. Truthful-QA (5 shot)

5. Winogrande (5 shot)

6. GSM8k (5 shot)

We evaluate two models trained for 300B and

350B tokens corresponding to roughly 85B and

100B unique C4 tokens respectively. Our find-

ings show substantial improvements on the ARC-

challenge benchmark, and Truthful-QA conssitent

in the zero-shot settings and comparable perfor-

mance across other datasets. Our models also per-

form better than the publicly released Falcon-1.3B

model trained on the Refined Web dataset, and the

Pythia-1.4B model, which was trained on Pile.
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Dataset ARC Hellaswag MMLU TruthfulQA WinoGrande GSM8K Avg

C4 31.7 62.1 26.7 33.4 57.9 0.9 35.5
Falcon-RW 35.1 63.6 25.3 36.0 62.0 0.5 37.1
Pythia-1.4b-Pile 32.7 55.0 25.6 38.7 57.3 0.8 35.0
TinLlama 33.9 60.3 26.0 37.3 59.5 1.4 36.4

QA+C4-85B (300K) 36.4 60.9 25.5 40.6 59.4 0.4 37.2
QA+C4-100B (350K) 35.5 60.5 26.8 40.6 61.3 0.3 37.5

Table 7: 1.3B 300K LLM Leaderboard Eval. Evaluation for WRAP is done on a single seed (1234).
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I Rephrase Prompt Templates

We detail the prompts given to the Mistral-7B model to generate synthetic versions of the C4 dataset in

specific styles. Note: there are slight variations in the prompt that were used for other frozen LLMs, and

no prompt was used for the T5 model.

Easy Style

A style designed to generate content understandable by toddlers.

A chat between a curious user and an artificial intelligence assistant. The

assistant gives helpful, detailed, and polite answers to the questions. USER:

For the following paragraph give me a paraphrase of the same using a very small

vocabulary and extremely simple sentences that a toddler will understand:

Hard Style

A style designed to generate content comprehensible primarily to scholars using arcane language.

A chat between a curious user and an artificial intelligence assistant. The

assistant gives helpful, detailed, and polite answers to the questions. USER:

For the following paragraph give me a paraphrase of the same using very terse

and abstruse language that only an erudite scholar will understand. Replace

simple words and phrases with rare and complex ones:

Medium Style

A style designed to generate content comparable to standard encyclopedic entries.

A chat between a curious user and an artificial intelligence assistant. The

assistant gives helpful, detailed, and polite answers to the questions. USER:

For the following paragraph give me a diverse paraphrase of the same in high

quality English language as in sentences on Wikipedia:

Q/A Style

A style intended to convert narratives into a conversational format.

A chat between a curious user and an artificial intelligence assistant. The

assistant gives helpful, detailed, and polite answers to the questions. USER:

Convert the following paragraph into a conversational format with multiple tags

of "Question:" followed by "Answer:":
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J Rephrase Examples from the MRPC Corpus

Original

The stock rose $2.11, or about 11 percent, to close Friday at $21.51 on the

New York Stock Exchange.

Revenue in the first quarter of the year dropped 15 percent from the

same period a year earlier.

Medium Style

The stock experienced an increase of approximately 11 percent, closing at

$21.51 on the New York Stock Exchange on Friday, with a rise of $2.11.

During the initial three months of the current year, there was a 15

percent decrease in revenue compared to the corresponding quarter of the

previous year.

Q/A Style

Question: What was the stock’s closing price on Friday? Answer: $21.51

Question: How much did the stock rise on Friday? Answer: $2.11 or about 11

percent.

Question: What was the revenue drop in the first quarter compared to

the same period last year? Answer: The revenue dropped 15 percent.
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K Rephrase Examples from C4 Corpus

Original

First round on stress at work survey. Answering the questionnaire is voluntary

and all answers will be saved anonymously. Please fill in this questionnaire

only if you have some work experience, part-or full time. Otherwise, you will

not be able to answer some of the questions! Here is a the link to all language

version.

Not that there’s a thing wrong with frozen burgers. The key here is the meat

seasonings, which are pretty strong and spicy and just GOOD, something else I

think is really necessary in a turkey burger because ground turkey otherwise

can be kind of flavorless. You’ll need ground turkey, onion powder, chili

powder, salt, pepper, and cayenne pepper for the burgers. Then the mayo takes

garlic and onion. Then we need buns, clearly, swiss cheese, lettuce, and onion.

I LOVE tomatoes but sometimes find that they get in the way of other flavors,

so I left them off of this burger. Add them if you’d like to your array of

toppings! First, we’ll make the mayo. Grate the garlic directly into the mayo,

add a pinch of salt, and squeeze in the lemon juice. Stir. Done! I love this.

Then, we’ll work on the burgers. Preheat a large skillet to medium-high heat

with some olive oil, preheat the broiler to high, then add all the spices to

the ground turkey.

Whether you like your velvet crushed, vibrant or head-to-toe, there’s really

no denying the sheer luxe and elegance of this timeless textile. Not only is it

super stylish, it can actually be so wearable for day-to-day wear. Yes, really!

This year it’s all about embracing fun gem-toned velvety pieces. Long gone are

the days when velvet was solely associated with dark moody shades of navy and

black. Below we’ve rounded up the most covetable velvet pieces on the high

street right now. We’re already coming up with outfit ideas! Are you completely

obsessed or beyond bored of it?

Save up to $8,086 on one of 1,258 Chrysler 200s near you. Find your perfect car

with Edmunds expert and consumer car reviews, dealer reviews, car comparisons

and pricing tools. We have 4,850,420. Research 2015 Chrysler 200 Sedan 4D

200C I4 prices, used values & 200 Sedan 4D 200C I4 pricing, specs and more.

Many years ago, we wrote about the stalling problem with the 2011 Chrysler

200, and believe it or not, we still receive an occasional call regarding the

problem.However, a much larger issue has monopolized the phone lines as of

late 2015 Chrysler 200 transmission problems leaving drivers with check engine

lights, harsh shifting, and the occasional loss of power. The 2015 Chrysler

200 can fetch a premium for its style and its horsepower–but rear-seat room

and handling are better bargains elsewhere. Find out why the 2015 Chrysler

200 is rated 8.4 by The. Don’t know where to find the perfect rims for your

2015 Chrysler 200 CARiD.com stores a massive selection of 2015 Chrysler 200

wheels offered in myriads of design and finish options, including chrome, black,

silver, and so much more.
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Medium Style

In the initial stage of the survey on work-related stress, participation is

optional, and all responses will be kept confidential. It is important to note

that only those with work experience, whether part-time or full-time, will be

able to accurately respond to certain questions. To complete the questionnaire,

please use the following link, which is available in multiple languages.

Frozen burgers are not inherently flawed, but the meat seasonings are a crucial

element that elevates the flavor of the dish. Ground turkey can be quite bland

without the right blend of spices, so it is essential to add onion powder,

chili powder, salt, pepper, and cayenne pepper to the mixture. Additionally,

garlic and onion should be used in the mayonnaise, which is necessary for the

burger’s topping. To make the mayo, grate the garlic directly into the mixture,

add a pinch of salt, and squeeze in lemon juice. Mix well. The mayonnaise is

a delicious addition to the burger topping. Now, let’s work on the burgers.

Heat a large skillet over medium-high heat with some olive oil, and preheat

the broiler to high. Add the seasonings to the ground turkey and mix well. The

burgers should be cooked on the skillet for about 5 minutes on each side, then

transferred to the broiler to cook for an additional 2-3 minutes. The burgers

are ready to be assembled on buns, along with swiss cheese, lettuce, and onion.

Tomatoes can be added as a topping, but they may overpower other flavors. It is

up to the individual to decide if they want to include them in their burger. In

conclusion, frozen burgers can be tasty, but the meat seasonings are essential

to add depth and flavor to the dish. The mayonnaise and toppings can also be

customized to suit individual preferences.

The luxurious and elegant nature of velvet cannot be denied, whether it is

crushed, vibrant, or head-to-toe. This timeless textile is not only fashionable

but also wearable for daily wear. In recent years, there has been a shift towards

embracing fun gem-toned velvety pieces, breaking away from the traditional

association of velvet with dark moody shades of navy and black. Below are some

of the most desirable velvet pieces available on the high street today, and we

are already envisioning outfits around them. Are you completely enamored with

velvet or simply beyond bored with it?

Discover savings up to $8,086 on one of 1,258 Chrysler 200s near you. Get expert

and consumer car reviews, dealer reviews, car comparisons, and pricing tools

from Edmunds. We have 4,850,420 listings for 2015 Chrysler 200 Sedan 4D 200C I4

prices, used values, and more. While we wrote about the stalling problem with

the 2011 Chrysler 200, we still receive occasional calls regarding the issue.

However, a more significant issue has taken over the phone lines recently -

2015 Chrysler 200 transmission problems that leave drivers with check engine

lights, harsh shifting, and occasional loss of power. Despite the premium price

for its style and horsepower, rear-seat room and handling are better bargains

elsewhere. The 2015 Chrysler 200 is rated 8.4 by The Car Connection. If you’re

looking for the perfect rims for your 2015 Chrysler 200 CARiD.com offers a vast

selection of 2015 Chrysler 200 wheels in various design and finish options,

including chrome, black, silver, and more.
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Q/A Style

Question: Is participating in the stress at work survey mandatory? Answer: No,

it is voluntary. Question: Will all answers be saved anonymously? Answer: Yes,

they will. Question: Who is eligible to take the questionnaire? Answer: Only

individuals with work experience, whether part-time or full-time. Question:

What happens if someone is not eligible to take the questionnaire? Answer: They

will not be able to answer some of the questions. Question: Can you provide a

link to all language versions of the questionnaire? Answer: Yes, here is the

link.

Question: What makes these frozen burgers so good? Answer: The meat seasonings

are strong and spicy, and they give the burgers a good flavor. Question: Do

you think ground turkey can be flavorless? Answer: Yes, ground turkey can

be flavorless, but adding spices and seasonings can help. Question: What do

you need to make these turkey burgers? Answer: Ground turkey, onion powder,

chili powder, salt, pepper, and cayenne pepper for the burgers. Then the mayo

takes garlic and onion. Buns, swiss cheese, lettuce, and onion are also needed.

Question: What about toppings? Answer: Add tomatoes if you’d like to your array

of toppings. Question: How do you make the mayo? Answer: Grate the garlic

directly into the mayo, add a pinch of salt, and squeeze in the lemon juice.

Stir. Done! Question: How do you work on the burgers? Answer: Preheat a large

skillet to medium-high heat with some olive oil, preheat the broiler to high,

then add all the spices to the ground turkey.

Question: What do you think of velvet? Answer: Whether you like your velvet

crushed, vibrant or head-to-toe, there’s really no denying the sheer luxe and

elegance of this timeless textile. Question: Is velvet super stylish? Answer:

Yes, really! This year it’s all about embracing fun gem-toned velvety pieces.

Question: Was velvet solely associated with dark moody shades of navy and

black? Answer: Long gone are the days when velvet was solely associated with

dark moody shades of navy and black. Question: Do you have any covetable

velvet pieces on the high street right now? Answer: Below we’ve rounded up the

most covetable velvet pieces on the high street right now. Question: Are you

completely obsessed or beyond bored of it? Answer: We’re already coming up with

outfit ideas!
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Question: How can I save money on a Chrysler 200? Answer: Save up to $8,086

on one of 1,258 Chrysler 200s near you. Find your perfect car with Edmunds

expert and consumer car reviews, dealer reviews, car comparisons and pricing

tools. Question: What are the problems with the 2015 Chrysler 200? Answer:

We have 4,850,420. Research 2015 Chrysler 200 Sedan 4D 200C I4 prices, used

values & 200 Sedan 4D 200C I4 pricing, specs and more. Many years ago, we

wrote about the stalling problem with the 2011 Chrysler 200, and believe it

or not, we still receive an occasional call regarding the problem. However, a

much larger issue has monopolized the phone lines as of late 2015 Chrysler 200

transmission problems leaving drivers with check engine lights, harsh shifting,

and the occasional loss of power. Question: What are the benefits of buying a

2015 Chrysler 200? Answer: The 2015 Chrysler 200 can fetch a premium for its

style and its horsepower–but rear-seat room and handling are better bargains

elsewhere. Question: How is the 2015 Chrysler 200 rated? Answer: It’s rated 8.4

by The. Question: Where can I find the perfect rims for my 2015 Chrysler 200?

Answer: CARiD.com stores a massive selection of 2015 Chrysler 200 wheels offered

in myriads of design and finish options, including chrome, black, silver, and

so much more.
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