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ABSTRACT

Specialist language models (LMs) focus on a specific task or domain on which
they often outperform generalist LMs of the same size. However, the special-
ist data needed to pretrain these models is only available in limited amount for
most tasks. In this work, we build specialist models from large generalist train-
ing sets instead. We propose a novel method, ClusteRed Importance SamPling
(CRISP). CRISP clusters the generalist dataset and samples from these clusters
based on their frequencies in the smaller specialist dataset. It is scalable, suit-
able for both pretraining and continued pretraining, and works well in multi-task
settings. CRISP performs favorably compared to other methods that adjust the
training distribution of the generalist data with guidance from the limited domain-
specific data. Our findings demonstrate improvements across different domains in
terms of language modeling perplexity and accuracy on multiple-choice question
tasks. We also present ablation studies that examine the impact of dataset sizes,
clustering configurations, and model sizes.

1 INTRODUCTION

Generalist language models (LMs) can address a wide variety of tasks, but this generality comes at
a cost (Brown et al., 2020). It necessitates a large training set representative of all prospective tasks,
as well as a large model to fit such a comprehensive dataset. Specialist models forgo this generality
and fit a model for a limited domain or task. In their narrow specialty, such models can achieve
better accuracy at a given model size (Kerner, 2024).

Pretraining a specialist is interesting when two conditions are met: (i) the targeted task justifies
the cost of training a dedicated model and (ii) a specialist dataset large enough for pretraining is
available. Condition (i) is dependent on the targeted application and its potential economic benefit.
Condition (ii) is more limiting since modern LMs are commonly pre-trained on datasets larger than
100B tokens1, an amount that cannot be commissioned for most applications.

This work considers relaxing condition (ii) and studies methods to train a specialist model when
specialized data is scarce. Given a large generalist dataset and a small specialist dataset, we propose
to modify the distribution over the generalist dataset guided by the scarce specialist dataset. Training
a model on the modified distribution gives a specialist model with better accuracy than a generalist
model of the same size.

We study this setting across different specialization tasks including domain-specific language mod-
eling (medical, encyclopedic domains) and end-tasks (scholar exams in science and humanities,
reasoning questions). We compare different strategies to manipulate the pretraining distribution.
We evaluate strategies based on text classifiers, gradient-alignment and importance sampling (IS).
Although IS is rarely used for LM data selection, we build upon on a simple IS recipe based on
clustering (Grangier et al., 2024b) and report that the resulting method systematically outperforms
alternatives. Our IS recipe clusters the generalist set and computes the cluster histogram over the
specialist data. Then, for pretraining, generic data is sampled according to the specialist histogram,
see Figure 1. We show the empirical benefit of this method varying model sizes (350m to 7B pa-
rameters), the amount of generalist data and the amount of specific data. We assess both perplexity
gains for language model adaptation and accuracy improvements for multiple choice question tasks.

1100B tokens ≃ 1m books ≃ 60x the annual publication of the top English language publisher (Lee, 2021).
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This paper presents an exhaustive comparison over different model sizes (350m, 1.3B, 6.8B) and
different numbers of clusters (scaling from 64 to 16m clusters with hierarchical clustering). We
consider different tasks, both for language modeling and multiple-choice questions. We also explain
the impact of hyperparameters such as the clustering representation and number of clusters. We
study IS in the context of multitasking and continued pretraining. We also perform ablations with
respect to the generic pre-training set size and the specialization data size.

2 RELATED WORK

Generalist vs Specialist LMs Generalist LMs address tasks for which they have not been explicitly
trained (Brown et al., 2020) or provide a good initialization for fine-tuning a dedicated model (De-
vlin et al., 2019). Nowadays generalists compete with dedicated models on many tasks (Jiang et al.,
2024; Dubey et al., 2024). Success, however, comes at a price: a generalist must be much larger
than a specialist for the same accuracy. For instance, on English-to-German translation, the 175-B
parameter generalist GPT-3 (Brown et al., 2020) is less accurate than a 136m-parameter special-
ist (Sennrich et al., 2016a). For neural LMs, the parameter count directly impacts training and
inference costs.

Specialist large LMs exist in domains where large amounts of specialized texts are available. Cor-
pora with billions of tokens enable pretraining or continued pretraining, a generalist pretraining
phase followed by a specialist one (Gururangan et al., 2020; Parmar et al., 2024)). Domains with
specialist models include medicine and biology (Lewis et al., 2020; Labrak et al., 2024; Bolton
et al., 2024), computer programming and mathematics (Lewkowycz et al., 2022; Rozière et al.,
2024; Azerbayev et al., 2024) and finance (Wu et al., 2023; Xie et al., 2023a). When specialist
data is available in limited amount, task-adaptive data-selection methods train specialist models on
generalist data instead.

Task-Adaptive Data-Selection These selection methods over-sample generalist data that aids model
generalization in the target domain. For masked LMs, Gururangan et al. (2020) observe that contin-
ued pretraining improves the performance on end-tasks when using data with high vocabulary over-
lap with the targeted task. For machine translation (MT), Aharoni & Goldberg (2020) show that a
task-adapted pretraining dataset can be selected from a generalist dataset using the nearest neighbors
of a small specialist set. Their nearest neighbor classifier relies on BERT sentence distance (Devlin
et al., 2019). Still for MT, other works have used other types of classifiers. In particular, contrasting
the scores of two LMs (generalist and specialist) is popular (Moore & Lewis, 2010; Axelrod et al.,
2011; Wang et al., 2018; Junczys-Dowmunt, 2018). Other classifiers include logistic regression or
fine-tuned BERT (Iter & Grangier, 2021). Outside classification, Xie et al. (2023c) proposed to
use importance sampling for continued pretraining. They improve classification tasks by selecting
pretraining data with a similar distribution to the targeted domain in terms of hashed-ngrams. Im-
portance sampling is also used in (Grangier et al., 2024b) and we build upon that work which adjusts
the frequency of generalist clusters informed by specialist data: we scale the method to millions of
clusters, show that it works with larger models, and extend it beyond language modeling tasks.

A third type of methods for task-adaptative selection relies on bilevel optimization and gradient
aligment (Pruthi et al., 2020; Xia et al., 2024; Grangier et al., 2023). The pretraining distribution is
selected such that the reweighted gradients from the generalist dataset mimics the expected gradi-
ent from the small specialist dataset. Gradient-alignment for data selection has also been used for
other purposes such as data summarization (Borsos et al., 2024), pretraining acceleration (Xie et al.,
2023b; Fan et al., 2024) or auxiliary task weighting (Wang et al., 2020; Raghu et al., 2021). Finally,
it is also worth mentioning data selection methods based on reinforcement learning (Liu et al., 2019;
Yoon et al., 2020), bayesian optimization (Ruder & Plank, 2017), data models (Ilyas et al., 2022)
and influence models (Yu et al., 2024).

Pretraining Data Quality Outside of domain aspects, the quality of pretraining data is also an
important topic (Wenzek et al., 2020; Dodge et al., 2021; Penedo et al., 2023; Li et al., 2024). Data
quality includes removing data in other languages (Cook & Lui, 2012), text formatting (Xu et al.,
2024), favoring long form text Gao et al. (2021); Gunasekar et al. (2023), removing duplicates (Lee
et al., 2022). It also involves balancing different sources of data with the goal of reaching a better
generic pretraining loss Xie et al. (2023b); Fan et al. (2024); Vo et al. (2024). Recent work also
considered filtering Kong et al. (2024), correcting Chen & Mueller (2024) or generating Maini
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et al. (2024) pretraining data with LMs. These data quality considerations are orthogonal to domain
concerns: quality filters are applied alongside domain adaptation decisions (Albalak et al., 2024).

3 DATA SELECTION FOR TASK-ADAPTIVE PRETRAINING

We consider three methods for task-adaptive pretraining of LMs. Classification and gradient align-
ment have been evaluated in different contexts before but not for end-tasks like multiple-choice
question answering. Clustered-based importance sampling at scale is a contribution of this work,
building upon recent work from Grangier et al. (2024b).

3.1 NOTATIONS

Dg is the training dataset sampled from the generalist distribution Dg. Ds is the specialist dataset
representative of the final task, sampled from the specialist distributionDs ̸= Dg. The loss of model
θ on a dataset D is

L(D; θ) :=
1

|D|
∑
x∈D

ℓ(x; θ) = − 1

|D|
∑
x∈D

1

|x|
∑
i

log p(xi|xi−1
1 ; θ)

where |D| denotes the cardinality of D and |x| denotes the length of sequence x = (x1, . . . , x|x|).
The perplexity of model θ on the dataset D is P(D; θ) := exp(L(D; θ)).

3.2 CLASSIFICATION

A binary classifier is trained to estimate the probability that a generalist pretraining document be-
longs to the targeted domain. The classifier ϕ is learned using positive examples from Ds and a
subset of Dg as negative examples. ϕ then builds a domain-specific pretraining set

C(Dg, t) := {x ∈ Dg such that ϕ(x) > t}.

which restricts the generic dataset Dg to the examples with an estimated probability to be in-domain
above threshold t. The threshold t is a sensitive hyperparameter that impacts the downstream model.
It is validated as a trade-off between focusing on data close to the domain of interest while keeping
C(Dg, t) large enough to train an LM of the targeted capacity. In our case, we rely on a logistic
regression classifier trained over sentence BERT (SBERT) text embeddings (Reimers & Gurevych,
2019), an established classification method (Minaee et al., 2021). The SBERT representation is also
commonly used in data selection (Albalak et al., 2024; Xie et al., 2023c; Zhang et al., 2024; Su
et al., 2023). This representation is also used in the alternative selection strategies we consider. As
an ablation, we also evaluate the impact of the choice of SBERT (Section 5.1).

3.3 GRADIENT-ALIGNMENT

Gradient-Alignment (GA) methods are common when the generic pretraining set Dg originates from
ng different data sources S, i.e. Dg =

⋃ng

i=1 D
g
i . These methods select weights for the different

sources by considering two functions of θ: the pretraining reweighed loss,

L((w,Dg); θ) :=

ng∑
i=1

wiL(Dg
i ; θ),

and the targeted loss, i.e. the loss on Ds in our case. The weights, on the simplex, can be in-
ferred via a bilevel formulation of the data selection problem (Dagréou et al., 2022): the mini-
mum θ⋆(w) = argminθ L((w,Dg); θ) depends on w and task-dependent pretraining is interested
in weights w that minimize L(Ds; θ⋆(w)) wrt w. This formulation results in algorithms that select
weights during pretraining to align the gradients of these two functions wrt θ (Xie et al., 2023b;
Grangier et al., 2023). In our case, we rely on the DoGE (Fan et al., 2024) algorithm. Compared
to classifiers, GA is harder to scale to large model size. This limitation is commonly addressed by
finding the mixture weights with a small model before transferring them to a larger model.

In this work, we consider a generic setting where the pretraining dataset Dg is not pre-segmented
into few data sources. Instead, we rely on the k-means clustering of the Sentence BERT embeddings
to identify data clusters. Clustering based on text embeddings has been used for data selection, both
for quality filtering (Kaddour, 2023) and domain adaptation (Grangier et al., 2024a).
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Figure 1: Task-adaptive data selection with Clustered Importance Sampling (CRISP).

3.4 CRISP: CLUSTERED IMPORTANCE SAMPLING FOR PRETRAINING

We sketch our strategy from Figure 1. Initially, we divide the space of text into clusters. We de-
compose the specialist loss and the generalist loss as a weighted sum of losses over clusters. Then
we make an independence assumption that implies that the specialist and generalist loss per cluster
are identical. The specialist loss is then computed as the generalist loss with a reweighing of each
cluster.

Specifically, we want to identify a model with a low loss on the specialist distribution Ds,

L(Ds; θ) = E
x∼Ds

[ℓ(x; θ)] =
∑
x

ℓ(x; θ)P (x|Ds)

We marginalize over a discrete latent variable c, the cluster variable, and write

L(Ds; θ) =
∑
x

∑
c

ℓ(x; θ)P (x|c,Ds)P (c|Ds) =
(2)

∑
x

∑
c

ℓ(x; θ)P (x|c)P (c|Ds) (1)

where the second equality =(2) makes the independence assumption P (x|c,Ds) = P (x|c). If we
make a similar assumption for the generalist loss P (x|c,Dg) = P (x|c), we can write both losses as

L(Ds; θ) = E
c∼(c|Ds)

[L(c; θ)] and L(Dg; θ) = E
c∼(c|Dg)

[L(c; θ)] (2)

where we define L(c; θ) =:
∑

x ℓ(x; θ)P (x|c). We now apply importance sampling to these expec-
tation, defining the importance weights as w(c) = P (c|Ds)/P (c|Dg),

L(Ds; θ) =
∑
c

L(c; θ)P (c|Ds) =
∑
c

L(c; θ)P (c|Ds)

P (c|Dg)
P (c|Dg) = E

c∼(c|Dg)
[w(c)L(c; θ)].

In our experiments, we estimate the terms w(c),L(c; θ) from the finite training sets Ds ∼ Ds and
Dg ∼ Dg. We count the number of examples in each cluster to estimate P (c|Ds), P (c|Dg). The
expected loss over a cluster L(c; θ) is estimated as the average loss over the generalist examples
in cluster c, L(Dg ∩ K(c); θ), where K(c) denotes the examples in cluster c. This strategy there-
fore only estimates P (c|Ds) on the small Ds. The term L(c; θ) is estimated over the large set as
L(Dg ∩K(c); θ) which uses many more samples and hence has less variance than the estimator
L(Ds ∩K(c); θ) over the small Ds.

We train CRISP models with stochastic optimization (Kingma & Ba, 2015, Adam) and propose
Algorithm 1. Here, we do not explicitly reweigh the loss. We instead sample clusters from their
importance. This avoids frequently visiting clusters with less weight. This strategy has less variance
in its gradient estimates, which can help convergence (Seiffert et al., 2008; An et al., 2021). This
algorithm is simple and efficient when one groups the generalist examples by cluster prior to training.

4 EXPERIMENTS & RESULTS

We perform experiments with transformer LMs (Vaswani et al., 2017). Most of our experiments use
models with 1.3B parameters (trained on 120B tokens) and we conduct ablations with 350m and
7B models (resp. trained on 40B, 350B tokens). Our settings for architectures and optimization are
borrowed from Brown et al. (2020), see Appendix D.

Our generalist training set is Redpj2 (Together AI Team, 2023). We select this dataset as it con-
tains only web-crawled data without additional interventions to help evaluation tasks (e.g. adding
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Algorithm 1 CRISP Training

1: Parameters: T (number of steps), B (batch size)
2: Input: Ds (specialist set), Dg (generalist set)
3: hs ← {P (c|Ds),∀c} ▷ Count cluster frequency on the specialist set Ds.
4: θ0 ← InitModel() ▷ Initialize the model.
5: for t = 1, . . . , T do
6: for i = 1, . . . , B do
7: ci ∼ Categorical(hs) ▷ Sample a cluster id from the specialist histogram.
8: xi ∼ Uniform(Dg ∩K(c)) ▷ Sample a generalist example in the selected cluster.
9: end for

10: θt ← AdamUpdate(θt−1, {x1, . . . , xB})
11: end for

encyclopedias, books or academic articles). Redpj2 contains over 30T tokens with our 32k byte-pair
encoding tokenizer (Sennrich et al., 2016b), see Table 4 in Appendix C. We segment the dataset into
non-overlapping 1,024 token windows (the model context limit) and compute SBERT embedding
for every window. We cluster the generalist dataset hierarchically with a clustering tree with branch-
ing 64 for 4 levels, see Appendix B. The levels therefore have 64, 4,096 (= 642), 260k (= 643) and
16.7m (= 644) clusters with an average of 540B, 8.4B, 130m and 2m tokens per cluster respectively.
As an alternative to SBERT embeddings, we also consider Latent Semantic Index (LSI), i.e. singular
value decomposition over tf-idf representations (Deerwester et al., 1990; Dumais, 2004).

For our specialist tasks, we consider 3 language modeling tasks (LM) and 3 multiple-choice-question
tasks (MCQ). For LM, we use Pile subsets from different domains (Gao et al., 2021): medical
(Pubmed Central), programming Q&A (Stackexchange), and encyclopedic (Wikipedia). For MCQ
answering, we use AI2 Reasoning Challenge (Clark et al., 2018, ARC), Massive Multitask Lan-
guage Understanding (Hendrycks et al., 2021, MMLU), and Reward Bench Reasoning (Lambert
et al., 2024, RWDB-R). ARC focuses on science questions, MMLU focuses on interdisciplinary
knowledge, RWDB-R focuses on correct vs incorrect solutions to math and programming problems.
To provide a representative specialist train set Ds ∼ Ds, we split the questions into a train and test
split, see Table 5 in Appendix C.

Our main results are reported with unified settings. For the classifier, the classification threshold is
the main parameter. A threshold accepting 2.5% of Dg worked best in for the runs with 1.3B models
over 120B tokens. For DoGE, the method is costly to apply over many data sources/clusters and we
applied it over 64 clusters, i.e. learning a mixture weight of dimension 64. For importance sampling,
the results presented in this section relies on 260k clusters. Later, Section 5 studies ablations and
parameter sensitivity. Details on hyperparameters can be found in Appendix D.

4.1 LANGUAGE MODELING TASKS

We evaluate specialist LMs on three domains from the Pile (Gao et al., 2021): medical (PubMed
Central), encyclopedic (Wikipedia) and programming Q&A (StackExchange). We limit specialist
training data from 14m tokens to the full Pile subset, up to 26.7B tokens, see Table 4 in Appendix C.

As baselines, we either train only on the in-domain (specialist) data without pretraining or we fine-
tune a model pre-trained on Redpj2. We refer to the Redpj2 pretraining distribution as the base dis-
tribution. For task-dependent pretraining, we resample the Redpj2 pretraining set using a classifier,
DoGE or importance sampling for each domain. The three methods have access to 14m special-
ist training tokens. In each case, the resampled pretraining set is used to train a 1.3B-parameter
transformer model with the same hyperparameters as the Redpj2 baseline.

We report pretraining results in Figure 2, and the fine-tuning results in Figure 3. For each domain,
the pretraining results evaluate models trained using the resampled Redpj2 examples. The fine
tuning results evaluate models where each model pretrained on (resampled) Redpj2 has been further
trained on the in-domain data itself (PubMed, StackExchange, Wikipedia). All experiments consider
the same optimization effort and we validate the fraction of steps spent in fine-tuning, from 3%-ft
with 14m tokens (97% pretraining) to 100%-ft with 26.7B tokens (no pretraining).
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The pretraining results in Figure 2 show that the in-domain perplexity is better with task-dependent
pretraining than with generic pretraining (base Redpj2) for all methods. This gain in perplexity
comes as model training focuses on data close to the targeted domain: the model capacity is not
used to fit the filtered out training data. Table 10 in Appendix F shows, for instance, that CRISP
outperforms base on 97.3% of PubMed but reports worse perplexity on 95.9% of Redpj2.

When we fine tune the pretrained models, the advantage of task-dependent pretraining is preserved,
as shown in Figure 3. Task-specific pretraining checkpoints are better starting points for fine-tuning
than generic ones. This shows the complementarity between task-dependent pretraining and fine-
tuning. Figure 3 also shows the necessity of pretraining: below 7B tokens, the “only specific” 1.3B
model shows high perplexity. When comparing task-dependent pretraining methods, importance
sampling consistently performs better after fine-tuning, even when the pretraining results are close
(e.g. classifier on PubMed, Wikipedia).
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Figure 2: Pretraining perplexities for language modeling tasks
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Figure 3: Fine-tuned perplexities for language modeling tasks. Task-dependent pretraining is
always better than generic pretraining. The ordering of the methods is unchanged from pretraining.
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Figure 4: Accuracy for multiple choice question tasks. Light colors indicate fine tuning improve-
ments if any. The ordering of the methods is consistent across all 4 datasets.
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4.2 MULTIPLE CHOICE QUESTION TASKS

Compared to LM, MCQ has much smaller specialist training sets per task, i.e. between 200k and
2m tokens, see Table 5 in Appendix C. The MCQ evaluation is also different: it uses accuracy and
not perplexity. For each example, the model scores the concatenation of the question and a possible
answer, for each proposed answer. The model is accurate when the correct answer is assigned the
highest score (probability or normalized probability, see Appendix E). For MCQ tasks, unlike for
LM tasks, the training loss (negative log likelihood) is therefore not closely tied to the test metric.

Despite these differences, we observe a similar benefit for task-dependent pretraining compared to
task-agnostic (base) pretraining. Figure 4 displays a similar method ordering and CRISP is consis-
tently the best method. As a difference with LM tasks, we observe limited benefits from fine tuning,
see Figure 4. Fine-tuning improves the base method on all datasets except ARC-E, but not enough
to outperform task-specific pretraining, see Table 12 in Appendix G.

5 ANALYSIS

5.1 CLUSTERING

We study the impact of the text representation for clustering and the number of clusters. We consider
two representations for clustering, the SBERT embeddings used in all other experiments and LSI
embeddings, see Section 4. We report their performance with 64, 4096, 262k and 16.7m clusters.

The representation is important: examples in the same cluster are close in the embedding space. Our
independence assumption, Equation 1, assumes that the loss in a cluster c is the same regardless
whether its data originates from Dg or Ds, i.e.

L(Dg ∩K(c); θ) ≃ L(Ds ∩K(c); θ). (3)

In practice, it is sufficient that the embedding space reflects the similarity of the loss gradient, i.e.
if the gradients of the loss over a generalist cluster Dg ∩K(c) is correlated with the gradient over
a specialist cluster Ds ∩K(c); θ), the model trained on the former improves on the later. Figure 5
shows that the SBERT representation yields better results than LSI for all settings.

The number of clusters is a trade-off, and its optimum is at 260k for most of our experiments.
There are multiple factors at play when the number of clusters varies. A smaller number of clusters
implies larger clusters: our hypothesis, Equation 3, is then stronger, as it assumes loss similarity on
large areas of the embedding space. At the limit, with one cluster, this hypothesis assumes that the
specialist loss and generalist loss are identical everywhere. Conversely, as the number of clusters
gets larger, the estimation of the cluster density on the small specialist set P (c|Ds) ≃ P (c|Ds) gets
less accurate. The estimator risks overfitting, i.e. favoring clusters frequent in the training set Ds

but not as frequent on other samples from Ds. Increasing the number of clusters also risks reducing
the effective training set size: the specialist data could be mostly concentrated in a few clusters,
corresponding to a small fraction of the overall generalist set Dg.
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Figure 8: Perplexity for CRISP on MMLU with different
number of clusters. Y-scales on (a) and (b) are different.

We explore these aspects on
MMLU. We first measure the
number of repeated examples
when training models with
CRISP pretraining for different
number of clusters. Figure 6
shows the number of repeti-
tions for each quantile of the
training set. Even for 16.7m
clusters, only a small minority
of training examples are re-
peated beyond 10 times and the
average number of occurrences
of the training is examples 1.95,
well within commonly recom-
mended values (Muennighoff
et al., 2023a; Xue et al., 2023).
Even if exact repetitions do not account for the poorer performance of the 16.7m cluster setting, its
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Figure 5: Accuracy for multiple choice question tasks varying the text representation for clus-
tering and the number of clusters. SBERT is more effective than LSI in all cases.
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Figure 7: Loss improvement on Redpj2 (valid) wrt base
as a function of the SBERT distance to MMLU train.
Models with a large number of clusters are better than base
in a small area near MMLU train. The gray area indicates
the 25-75% quantiles for the MMLU test set.

training set might be less diverse and the model might generalize well only in a small neighborhood
of its training set. We evaluate if the Redpj2 examples with good perplexity concentrate around Ds,
the MMLU training set. Figure 7 shows that the benefit of CRISP over base is indeed correlated
with the distance to Ds. As the number of cluster increases to 16.7m, the benefit over base
concentrate in an area with very few samples. For comparison, we plot the 2 middle quartiles [0.25,
0.75] where most of the MMLU test data concentrate in gray. We remark that MMLU test data
mostly lies in an area where the perplexity of IS 16.7m is low.

Figure 8 shows the perplexity for CRISP runs on MMLU. On Figure 8a, the perplexity is computed
from the reweighed loss on Redpj2. This is the loss optimized during pretraining. It shows that when
the number of cluster increases the sampled training set is less diverse and corresponds to an easier
learning problem (< 5 PPL). On Figure 8b, the perplexity is computed on the MMLU data itself, on
the training set (plain) and on the test set (dotted). The scale of both plot is different: the resampled
perplexities on Redpj2 are therefore not a good approximation of the MMLU perplexities. This
quantifies the error resulting from our assumption, Equation 3. We also see overfitting for 16.7m
clusters, the only case with better MMLU perplexity for train than for test. Finally, we notice that
the gray area in Figure 7 fails to show that 260k cluster would have the best perplexity, which shows
that SBERT distance to the training data is not the only factor explaining model performance.

5.2 MODEL SIZE

This section compares CRISP and base at 3 model sizes. The benefit of task-dependent training is
consistent across model sizes, see Figure 9. We consolidate results across sizes to report the training
cost in GPUh vs accuracy in Figure 10. GPUh are measured in training hours per graphic processor
(Nvidia H100). We evaluate multiple checkpoints across model sizes and sort the checkpoints by
training cost. The big dots mark transitions between model sizes: they show that the the 1.3B I.S.
model outperforms the 6.7B base model on ARC. This shows substantial training speedups (∼30x).
Of course, a smaller model is also beneficial at inference.
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Figure 9: Accuracy for multiple choice question tasks across model sizes.
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Figure 11: MMLU with less training data. When the generalist set Dg is small (a,b), the impor-
tance sampling method will up-sample a small part of Dg and this part will be seen multiple times
during training. When this part is too small, the benefit of data selection vanishes. When the spe-
cialist set Ds is small (c), the importance sampling weights are poorly estimated and the importance
sampled data might not be representative of the targeted task.

5.3 DIFFERENT AMOUNT OF TRAINING DATA

This section varies both the amount of generalist data available to sample the CRISP dataset from
and the amount of specialist data for inferring the CRISP weights. When specialist data concen-
trates on a few clusters, CRISP often samples generalist data from the same clusters, which can
be problematic when the generalist set is small. We restrict the pretraining set to 700B and 120B
tokens (downsampling Redpj2 by resp. ∼ 50x and ∼300x). Our pretraining runs use 120B tokens,
so a base run never repeats in all settings. When CRISP is applied, some tokens are repeated. Fig-
ure 11a shows that, when restricting to 120B tokens, the number of repetition becomes high (22.5
on average) and CRISP is ineffective after 256k steps.
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Table 1: Accuracy (%) for Task Transfer and Multitasking. Importance Sampling on MMLU
and on multitask improves all tasks compared to baseline.

Model Evaluation Tasks
ARC-E ARC-C MMLU RWDB-R Multi

Base Redpj2 58.4 27.5 30.1 62.2 45.1

CRISP ARC 71.3 38.6 28.9 60.9 48.2
MMLU 63.4 28.7 33.4 65.2 48.2
RWDB-R 42.4 23.4 26.4 70.1 43.1

CRISP Multi 68.6 34.1 31.1 70.9 51.1

When the specialist dataset is smaller, Figure 11c shows that the errors in estimating cluster fre-
quencies P (c|Ds) negatively impact end task accuracy. This suggests future work to improve this
estimation for tasks with small Ds: e.g. specific set augmentations or task grouping.

5.4 TASK-TRANSFER AND MULTITASKING

We perform cross-task evaluation, i.e. targeting a task A and evaluating on a task B, we also pre-
train a multitask models with CRISP averaged weights from multiple tasks. Our results for the 1.3B
models are in Table 1, we also report cross-task evaluation results for different model sizes in Ap-
pendix J. Cross-task evaluations show that, perhaps unsurprisingly, the best results on a task A are
obtained when pretraining for task A. Transfer differs across tasks: CRISP targeting MMLU gives
better results than base for all tasks, which is not the case for CRISP targeting ARC or RWDB-R.
The multi-task result which mixes the histograms with the same weight (1/3 for ARC, MMLU and
RWDB-R) gives the best result on averaged multitask accuracy. Surprisingly, on RWDB-R, this
setting slightly outperforms targeting RWDB-R itself.

5.5 TASK-DEPENDENT CONTINUED PRETRAINING
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Figure 12: Continued Pretraining
on MMLU

We have seen the benefit of pretraining a model per task
with CRISP in Figure 4. For tasks where pretraining cost
is a concern, shorter pretraining runs still provide benefits,
see Figure 10. Pretraining a multi-task model is also a cost-
effective option, see Table 1. This section evaluates a third
cost-effective option when targeting multiple tasks: continued
pretraining. In this case, pretraining is divided into a generic
pretraining phase and a task-dependent continued pretraining
phase using CRISP. The compute cost of the generic pretrain-
ing can be shared across multiple tasks. Our results in Fig-
ure 12 show that even 10% of CRISP continued pretraining
(i.e. generic pretraining for 928 steps out of 1,024) gives an
accuracy (32.9%) close to a full CRISP run (33.4%). We also remark that the impact of continued
pretraining is stronger than fine tuning a generic model on MMLU (31.0% accuracy), see Figure 4.

6 CONCLUSIONS

A small specialist LM is interesting since it can outperform a larger generalist LM on its targeted
domain while having a lower inference cost. We explore pretraining specialist LMs when little
specialization data is available, a common setting that prevents pretraining of dedicated LMs. We
evaluate different methods that modify the distribution of a generic training set guided by little spe-
cialist data. Our experiments highlight the benefit of clustered importance sampling: i.e. resampling
the generic set such that its cluster histogram matches the specialist data. Our findings show that
pretraining with this method provides strong models both for LM and question answering tasks. We
also explore ways to lower the training cost of specialist models by showing their benefit on shorter
training runs, continued pretraining and multitask settings. Our work shows that a simple, scalable
importance sampling method can provide effective specialist LMs, even from little specialization
data. Since clustered importance sampling is modality-agnostic, we foresee extensions of this work
to other modalities, including vision and audio.
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Huy V. Vo, Vasil Khalidov, Timothée Darcet, Théo Moutakanni, Nikita Smetanin, Marc Szafraniec,
Hugo Touvron, Camille Couprie, Maxime Oquab, Armand Joulin, Hervé Jégou, Patrick Labatut,
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APPENDIX

A SCALABLE CLUSTERING

We cluster the generic dataset (Redpj2) with hierarchical clustering. We build a clustering tree.
Each node in the tree is associated with a cluster centroid. The examples traverse the tree from
top to bottom, selecting the node corresponding to the closest centroids among the current node’s
children.

The training of the tree proceed from root to leaves. Iteratively, a new level is built by applying
k-means to a subset of the examples belonging to each node. We built a tree of depth up to 4, always
splitting nodes in 64 clusters. For k-means, we normalize the Euclidean norm of the vectors prior to
clustering. We train the model via Expectation Maximization using k-means++ initialization (Arthur
& Vassilvitskii, 2006). At each step, we sample 6,400 new examples. With 20 steps, we visit 128k
examples. To ensure a cluster distribution close to uniform, we monitor the cluster sizes at each
assignment steps. If a cluster is larger than our balancing limit (0.022 ≃ 1.5 ∗ 1/64), we split
evenly at random its assignments with the smallest cluster, as suggested by Jegou et al. (2010). The
clustering hyper-parameters can be found in Table 8.

B CLUSTERING & EMBEDDING COST

The computational cost of k-means clustering is negligible compared to the cost of com-
puting text embeddings. Most of the experiments in this work are performed with SBERT
MiniLM-L6-v2 Reimers & Gurevych (2019). Embedding the 34.6T tokens of Redpj2 amounts
to 5.4k GPU hours on a reference NVidia H100 GPU. Other models can provide better embeddings
at a higher cost. We examined the results of clustering accuracy, MTEB evaluation Muennighoff
et al. (2023b), versus embedding cost (for Redpj2 in GPU hours on H100) in Table 2.

Table 2: Embedding Cost versus Clustering Accuracy.

Clustering method Cost (GPUh) Accuracy (%)

all-MiniLM-L6-v2 Reimers & Gurevych (2019) 5.4k 41.94
e5-large-v2 Wang et al. (2022) 91.4k 44.26
e5-base-v2 Wang et al. (2022) 27.4k 44.10
all-mpnet-base-v2 Reimers & Gurevych (2019) 28.6k 43.69
gte-base-v1.5 Li et al. (2023) 87.4k 47.90
gte-small Li et al. (2023) 13.3k 44.89

In this cost-benefit table, gte-small stands out. We clustered the Redpj2 dataset with embedding
from this model and we report MCQ results with CRIPS over this clustering. We compare these
results with LSI and SBERT from Figure 5 in the main text. The results in Table 3 show that these
embeddings are beneficial, especially with a small number of clusters.

C DATASET STATISTICS

Our generic pretraining set is Redpj2 (Together AI Team, 2023). We use the head+middle English
version of the dataset, i.e. web-documents with a high density of English text. Our specialization
datasets for language modeling are much smaller, see Table 4. Compared the LM tasks, the multiple
choice question tasks have even smaller specialization training set, i.e. between 200k and 2m tokens,
see Table 5. For the LM data, we rely on the train split provided by Pile Gao et al. (2021). For the
MCQ data, we split each evaluation set into an equal sized train and test set uniformly at random.
This provides a representative specialist train set Ds ∼ Ds. This also avoids cross-contamination
between tasks, e.g. the official training set of MMLU contains ARC which would prevent the task
transfer experiments in Section 5.4.

D ARCHITECTURES & HYPERPARAMETERS

Our architecture configurations are borrowed from Brown et al. (2020) and described in Table 6. We
report the data selection hyperparameters in Table 7 and the clustering hyper-parameters in Table 8.
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Table 3: MCQ accuracy with CRISP for different embedding methods.

Clusters Emb. Arc-E Arc-C MMLU

64 LSI 65.0 31.8 31.1
SBERT 65.2 33.0 31.2
GTE 67.8 33.8 31.5

4096 LSI 67.6 35.4 31.6
SBERT 69.7 36.5 32.6
GTE 69.9 37.0 32.8

262k LSI 66.5 36.4 31.3
SBERT 71.2 38.6 33.4
GTE 69.3 37.6 33.4

16m LSI 53.8 29.6 29.0
SBERT 62.3 33.8 30.8
GTE N/A N/A 31.7

Table 4: LM Datasets.

Redpj2 PubMed StackExchange Wikipedia
Dataset role generalist specialist specialist specialist

Train Num. tokens 34.6T 26.7B 10.3B 4.68B
Num. documents 24.0B 2.94m 15.4m 5.79m

Test Num. tokens 359m 52.4m 20.1m 14.1m
Num. documents 248k 5.82k 29.9k 17.4k

Table 5: MCQ Datasets.

ARC-E ARC-C MMLU RWDB-R
Train Num. tokens 143k 79.6k 2.05m 426k

Num. questions 1.18k 578 6.95k 736
Avg. tokens per choice 30.3 34.5 73.5 289

Test Num. tokens 144k 87.7k 2.09m 408k
Num. questions 1.19k 593 7.09k 695
Avg. tokens per choice 30.2 37.0 73.6 293

Num. choices per question 4 4 4 2

Table 6: Model Hyperparameters

Num. parameters 350m 1.3m 6.7B
Architecture

Embedding dim. 1,024 2,048 4,096
Latent dim. 4,096 8,192 16,384
Num. heads 16 16 32
Depth 24 24 32
Context limit 1,024 1,024 1,024

Optimization
Batch size 96k 115k 1.04m
Learning rate 1e-4 1e-4 3e-4
Grad clipping 5.0 5.0 0.1
Steps 400k 1m 340k
Num. train tokens 40B 120B 350B

E MCQ EVALUATION

For multiple-choice questions, we use the LM eval harness (Gao et al., 2024). For each task, the eval-
uated model estimates the (log) probability of each answer a given the context c, that is, logP (a|c).
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Table 7: Data-Selection Hyperparameters

Method Parameter Range
Classifier Regularization strength {None, 1000, 100, 10, 1, 0.1, 0.01, 0.001}

Threshold quantiles {0.5, 0.6, 0.7, 0.75, 0.8, 0.9, 0.95, . . .
. . . , 0.975, 0.98, 0.9875, 0.99, 0.995, 0.9975}

DoGE Num. clusters 64
Proxy model size Transformer base, 110m parameters
Proxy model optimization 32k batch size, 1e-4 learning rate, 100k steps
Bregman coefficient µ 5e-4
Transferred weights {run average, last 20 step average}

Importance S. Num. clusters {64, 4096, 262k, 16.7m}

Table 8: Hierarchical Clustering Hyperparameters

Parameter Range
Tree depth 4
Tree arity 64
Balancing limit 0.022
Number of samples per step 6,400
Number of steps 20
SBERT model MiniLM-L6-v2
SBERT emb. dim. 384
LSI dim. 256

The question contains the task prompt concatenated with the current question, while the answer
contains the answer text. With this strategy, the model has no access to alternative answer choices
proposed in the prompt. Table 9 reports our prompt. For all evaluations, we use the above prompt
without example questions, that is, a zero-shot evaluation (Brown et al., 2020). Accuracy is calcu-
lated by verifying whether the highest score is assigned to the correct answer. The scores correspond
to log probabilities for ARC-E and RWDB-R, while ARC-C, MMLU uses normalized scores, i.e.
log probabilities divided by the number of characters in the answer.

Table 9: Task prompts (non-bold) for the multiple-choice-question tasks.

AI2 Reasoning Challenge (ARC) Easy and Challenge
Question: <question>\n
Answer: <answer>

Massive Multitask Language Understanding (MMLU)
The following are multiple choice questions (with answers) about <topic>.\n
Question: <question>\n
Answer: <answer>

Rewardbench Reasoning (RWB-R)
Follow the instructions below.\n
Instructions: <question>\n
Answer: <answer>

F SUPPLEMENTARY RESULTS FOR LANGUAGE MODELING TASKS

We measure the fraction of examples where the pre-trained model is better than the base model. We
measure this rate both on the held-out data from Dg (measured on the 360m tokens from Redpj2
valid) and on held-out data from Dg (measured on the full Pile validation set). The results in Ta-
ble 10 show that the model trained with importance sampling improves perplexity on most specialist
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Table 10: Fraction of examples with lower perplexity with importance sampling than with base.
Compared to base, CRISP models specialize: they performs better on most specialist examples and
worse on most generic examples.

Generalist Dg Specialist Ds

(Redpj2) (Pile subset)
PubMed 6.1% 97.3%
StackExchange 2.9% 92.6%
Wikipedia 12.4% 86.7%

documents (right column). Its training on the importance sampled distribution utilize model capacity
mostly on data close to the domain of interest, this relieves the model from fitting well most of the
generic data, and hence most generic documents have higher perplexity with CRISP (left column).

For completeness, we also report the perplexity numbers of Figure 3 in Table 11.

Table 11: Perplexity on language modeling tasks after fine-tuning. These tables reports the
perplexity numbers from Figure 3.

(a) PubMed
Specific tokens 14m 100m 500m 2.5B 7.5B 26.7B
Only Specific 25.73 10.09 6.64 5.08 4.47 4.20
Base redpj2 6.34 5.98 5.38 4.79 4.47 4.20
DoGE 5.41 5.19 5.02 4.72 4.47 4.20
Classifier 5.18 5.08 4.90 4.67 4.45 4.20
CRISP 5.11 5.00 4.83 4.63 4.44 4.20

(b) StackExchange
Specific tokens 15m 133m 1.2B 10.3B
Only Specific 23.93 9.60 5.79 4.35
Base redpj2 8.41 6.66 5.35 4.35
DoGE 7.04 6.21 5.30 4.35
Classifier 7.15 6.34 5.39 4.35
CRISP 6.67 6.12 5.38 4.35

(c) Wikipedia
Specific tokens 14m 93m 668m 4.7B
Only Specific 57.13 18.22 9.97 6.76
Base redpj2 8.53 7.99 7.41 6.43
DoGE 8.13 7.71 7.26 6.39
Classifier 7.83 7.53 7.23 6.50
CRISP 7.66 7.37 7.09 6.40

G SUPPLEMENTARY RESULTS FOR MULTIPLE CHOICE QUESTIONS

Table 12 reports the MCQ results before and after fine-tuning, i.e the accuracy numbers from Fig-
ure 4. Fine-tuning on the small MCQ train sets optimizing log-likelihood does not always benefit
end-task accuracy.

H COMPARING THE RESULTS OF DOGE AND IMPORTANCE SAMPLING

We observe in Table 13 that the pretraining results of DoGE and importance sampling on 64 clusters
are close. Both methods pretrain models by sampling the clustered generalist data according to the
cluster weights. If both methods would infer the same cluster weights, their pretraining runs would
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Table 12: MCQ Accurary. Fine tuning results are dashed when not improved from pretraining.
This table reports the accuracy numbers from Figure 4.

ARC-E ARC-C MMLU RWDB-R
Pretr. +ft Pretr. +ft Pretr. +ft Pretr. +ft

Base redpjv2 58.4 – 27.4 28.8 30.0 31.0 62.1 63.5
DoGE 66.2 – 33.3 34.9 31.0 31.5 67.4 67.9
Classifier 68.2 – 36.7 – 32.4 – 69.4 –
CRISP 71.2 – 38.6 – 33.4 33.5 70.0 –

Table 13: DoGE & CRISP on 64 Clusters

LM PPL↓ MCQ Acc (%) ↑
PubMed ARC-E ARC-C MMLU

DoGE 7.44 66.2 33.3 31.0
CRISP 7.28 65.2 33.0 31.2

be identical. We therefore ask if the similar results are due to similar cluster weights. Figure 13
compares the cluster weights for both methods. The top clusters for both methods are similar, but
their histograms are not identical. This shows that similar pretraining results can be obtained with
different weights.
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Figure 13: DoGE vs CRISP weights with 64 clusters. We report the top-16 clusters sorted by mean
weight across methods.

I COMPARING CRISP AND CROSS-ENTROPY DIFFERENCE (CED)

Contrasting the scores of two LMs (generalist and specialist) is a popular method for data selec-
tion (Moore & Lewis, 2010; Axelrod et al., 2011; Wang et al., 2018; Junczys-Dowmunt, 2018). We
considered this method based on Wang et al. (2018): we obtain the specialist LM by fine-tuning a
generalist LM on the specialist training set. We rely on a 350m parameter model for the selection.
One should note that this method is particularly expensive since it requires scoring the entire Redpj2
dataset twice with an LM, which is more expensive than embedding and clustering the dataset. Our
results show that CED improves over the classifier method but CRISP is significantly better, see
Table 14.

J TASK TRANSFER FOR 350M, 1.3B AND 7B MODELS

Table 15 complements the task-transfer results from Table 1 in Section 5.4 with the results across
different model sizes. The importance sampling models trained with MMLU histograms outperform
the base models on all tasks for all model sizes.
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Table 14: Comparison with Cross-Entropy Difference for MCQ Accuracy (%), 1.3B model.

Arc-E Arc-C MMLU

Base 58.4 27.4 30.0
CED 58.9 30.5 31.1
Doge 66.2 33.3 31.0
Classifier 68.2 36.7 32.4
CRISP 71.2 38.6 33.4

Table 15: Accuracy (%) for Task Transfer on 350m, 1B and 7B models.

Model Evaluation Tasks
ARC-E ARC-C MMLU RWDB-R Multi

350m Base 49.5 24.5 27.0 57.6 40.5
CRISP ARC 65.3 31.5 27.4 58.4 44.7
CRISP MMLU 55.6 26.3 29.8 61.3 44.0

1B Base 58.4 27.5 30.1 62.2 45.1
CRISP ARC 71.3 38.6 28.9 60.9 48.2
CRISP MMLU 63.4 28.7 33.4 65.2 48.2

7B Base 69.9 35.9 34.4 64.9 50.7
CRISP ARC 74.5 42.2 32.6 62.4 51.1
CRISP MMLU 70.0 37.6 38.0 67.5 53.1
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