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Abstract

The proposed method uses homonymous and heteronymous example-
pairs to train a linear preprocessor on a kernel-induced Hilbert space.
The algorithm seeks to optimize the expected performance of elemen-
tary classi�ers to be generated from single future training examples. The
method is justi�ed by PAC-style generalization guarantees and the re-
sulting algorithm has been tested on problems of geometrically invariant
pattern recognition and face veri�cation.

1 Introduction

A striking feature of human vision is the ability to reliably recognize complex objects
after having seen only a single representative specimen, often under a different spatial
perspective. Attempts to explain this astonishing generalization performance rely on the
concept of transfer. From the earliest childhood on the semantic equivalence of visual
phenomena involving different scales and perspectives of identical objects is observed,
leading to an accumulation of experience which can be applied to the recognition of novel
categories [10].

The potential utility of machine learning algorithms possessing a similar power of meta-
generalization is obvious. One possible approach [5] uses the accumulated experience to
learn a representation �, mapping the input data to the euclidean space Rd. Once a training
example for a novel category or concept has been presented, the class membership of any
other specimen can be determined by thresholding the euclidean distance k� (x)� � (x0)k
between the representations of example and specimen.

The method presented here is of this kind and belongs to the category of kernel-techniques
[6]: A �xed positive de�nite kernel de�nes a map  to embed the input data in a Hilbert
space H . The training data is then used to learn a linear transformation T : H ! Rd and
the combined map � = T �  is employed to represent future data.
Similar to [5] training is based on homonymous and heteronymous pairs of examples. In
section 2 we present a probabilistic model for the generation of such pairs and derive a
compact expression for the risk incurred by using a particular linear transformations T .
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The Hilbert-Schmidt inner product casts this risk functional into a form dependent only
on the operator T �T . This form is equivalent to the more familiar risk of vector-valued
classi�ers (such as SVM's). This equivalence leads to generalization guarantees and gives
rise to a regularized training algorithm for the transformation T .

The algorithm has been tried with good results on the recognition of digits under arbitrary
rotations, scalings and combined rotations and scalings, the recognition of objects under
spatial rotations and face recognition.

Some of this work can be found in [8]. The algorithm and the experimental results are new.

2 Risk functionals for representations

X will denote the input space containing the data to be processed. We will not require
a �xed alphabet of labels Y and a distribution � on X � Y , as is customary in learning
theory, instead we assume that there is a pair oracle, that is a probability distribution � on
X 2 � f�1; 1g with the following interpretation:

� � (x; x0; r) is the probability to encounter the pair x; x0 2 X , being homonymous
if r = 1 (having the same name, label, class or category) or being heteronymous
if r = �1 (of different name, label, class or category).

The labeled pairs in X 2�f�1; 1g are also called equivalence constraints by some authors
(e.g. [3]). Here it suf�ces to postulate the existence of � as an axiom, but is is possible to
derive � from multi-class learning tasks or multi-task environments to justify the use of the
risk functional de�ned below (see [8]).

Now �x, once and for all, a feature-map  : X ! H whereH is a Hilbert space, such that
k (x)�  (x0)k � 1;8x; x0 2 X . This boundedness assumption is a technical require-
ment for our theoretical results and not implicitely exploited by our algorithm.

Let T be an arbitrary linear transformation T : H ! Rd for some integer d. We want
to decide if two inputs x and x0 are homonymous or heteronymous and base this decision
only on the distance between the represented points T (x) and T (x0). Evidently this
involves thresholding this distance at a �xed positive constant, and because this constant
can be absorbed in the transformation we can assume it to be one. The probability of error
of this decision rule, as (x; x0; r) are drawn from the pair oracle �, is then given by

R (T; �) = Pr
(x;x0;r)��

fr (1� kT (x)� T (x0)k) � 0g : (1)

Any bound on this risk functional can be converted to an error bound for elementary thresh-
old classi�ers, as soon as we are furnished with (single) examples of the classes involved.

Since the precise nature of the distribution � is hidden from the learner, the transformation
T has to be chosen on the basis of a �nite sample S = ((x1; x01; r1) ; :::; (xm; x0m; rm)) 2�
X 2 � f�1; 1g

�m of labeled pairs generated inm independent, identical trials of �.
The problem of selecting T to minimize (1) is equivalent to learning a classi�er for
the binary classi�cation problem implied by the pair oracle � with input space X 2
and a hypothesis space parametrized by linear transformations. It is also equivalent
to learning the pseudometric (x; x0) 7! kT (x)� T (x0)k and the kernel (x; x0) 7!
hT �T (x) ;  (x0)i. The loss of generality in our approach just corresponds to the selec-
tion of a constrained hypothesis space for the purpose of better generalization.



3 Operator-valued large-margin classi�ers

With H2 we denote the real vector space of symmetric operators on H satisfyingP1
i=1 kTeik

2 � 1 for every orthonormal basis (ei)1i=1 of H . For S; T 2 H2 and an
orthonormal basis (ei) the series

P
i hSei; T eii is absolutely summable and independent

of the chosen basis. The number hS; T i2 =
P
hSei; T eii de�nes an inner product on H2,

called the Hilbert-Schmidt inner product, making H2 into a Hilbert space whose elements
are called Hilbert-Schmidt operators. We denote the corresponding norm with k:k2 (see
Reed and Simon [9] for background on functional analysis).

For every v 2 H we de�ne an operator Qv by Qvw = hw; vi v. Then Qv 2 H2 and
kQvk2 = kvk

2. If T : H ! Rd then T �T 2 H2 and hT �T;Qvi2 = kTvk
2, a fundamen-

tally important formula, which allows to rewrite the risk functional (1) as
R (T; �) = Pr

(x;x0;r)��

�
r
�
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T �T;Q (x)� (x0)

�
2

�
� 0
	
:

On H2 the positive operator T �T can therefore be regarded as a linear classi�er, and
the risk above is just the expected error of this classi�er on the labeled data-point�
Q (x)� (x0); r

�
2 H2 � f�1; 1g as (x; x0; r) are drawn from the distribution �. Inspired

by the theory of linear large-margin classi�ers we �x a Lipschitz function f � 1(�1;0] with
Lipschitz constant cf and de�ne the empirical risk functional L̂f for a positive semide�nite
operator P 2 H2 and a sample S = ((x1; x01; r1) ; :::; (xm; x0m; rm)) 2

�
X 2 � f�1; 1g

�m
L̂f (P; S) =

1

m

mX
i=1

f
�
ri

�
1�

D
P;Q (xi)� (x0i)

E
2

��
: (2)

Theorem 1: Let T be some class of linear transformations T : H ! Rd. Then for every
� > 0 we have with probability greater than 1 � � in a sample S � �m, that for every
T 2 T

R (T; �) � L̂f (T �T; S) +
1p
m

 
4 cf sup

A2T
kA�Ak2 +

r
ln (1=�)

2

!
:

The proof (see [8], Theorem 3) just transcribes the results in [2] to the setting of Hilbert-
Schmidt operators. Using standard techniques (e.g. Lemma 15.5 in [1]) the theorem can
be converted into a uniform upper bound for all linear transformations. Up to a logarith-
mic term minimization of this upper bound is equivalent to minimization of a regularized
objective function of the form

� (T ) = 
 (T �T ) = L̂f (T
�T; S) +

�p
m
kT �Tk2 ;

where � > 0 is a regularization parameter. This is the method proposed by the author.

4 A training algorithm

Any minimizer of 
 must be a linear combination of the Q (xi)� (x0i) and therefore leave
invariant the linear spanM of the vectors  (xi)�  (x0i). A minimizer T of � must thus
vanish onM? and its range can be at mostm-dimensional. We can therefore replaceH by
M (now that we have the dimension-independent bound above) and set d = m. The most
general form of the optimal T is

Tz =
dX
i=1

hz; vii ei;



Table 1: Learning algorithm
Given sample S, regularization parameter �, margin 
, learning rate �
initialize �0 = �=

p
jSj

initialize T = (v1; :::; vd) (where the vi are row-vectors)
repeat

Compute kT �Tk2 =
�P

ij hvi; vji
2
�1=2

For i = 1; :::; d compute wi = 2 kT �Tk�12
P
j hvi; vji vi

Fetch (x; x0; r) from sample S
For i = 1; :::; d compute ai  hvi; x� x0i
Compute b 

Pd
i=1 a

2
i

If r (1� b) < 


then for i := 1; :::; d do vi  vi � �
�
r

 ai (x� x

0) + �0wi

�
else for i := 1; :::; d do vi  vi � ��0wi

until convergence

where ei is the canonical basis of Rd and the vectors vi (which completely specify the
transformation T ), are linear combinations of the  (xi)� (x0i), the coef�cients of which
have to be determined by the learning algorithm.

From now on we take f to be the hinge-loss with margin 
, that is f (t) = 1� t=
 if t < 

and f (t) = 0 otherwise. Then f is convex and has Lipschitz constant 1=
. It follows that

 is a convex functional on the positive semide�nite operators onM .To minimize �we use
gradient descent. Despite the fact that � is not convex, the gradient technique is unlikely to
become trapped in a local minimum:

Proposition 2: Suppose 
 is a continuous functional on the set of positive semide�nite
m�m matrices. For any m�m matrix T de�ne � (T ) = 
 (T �T ). If � attains a stable
minimum at T , then 
 attains a stable minimum at T �T .

Proof: To arrive at a contradiction assume that � attains a stable minimum at T , but
 does
not attain a stable minimum at T �T . Then there is a sequence An of positive semide�nite
matrices such that An ! T �T and 
 (An) < 
 (T �T ). So A1=2n ! (T �T )

1=2
= jT j.

By polar decomposition write T = U jT j, with U unitary and de�ne Tn = UA
1=2
n . Then

Tn ! U jT j = T , but � (Tn) = 
 (T �nTn) = 
 (An) < � (T �T ), so � cannot attain a
stable minimum at T �
So if gradient descent arrives at a stable minimum T of �, then it must have found a global
minimum by the convexity of 
. Computing the gradient of the objective function with
respect to the variables vk then yields the algorithm given in Table 1.

Note that with any standard SVM algorithm 
 could be minimized over all of H2. Mini-
mization of � (T ) = 
 (T �T ) however requires that the minimum be attained at a positive
semide�nite operator A = T �T in H2, a constraint which a standard SVM algorithm does
not respect. The problem can nevertheless be cast in the form of convex optimization, be-
cause the positive semide�nite operators in H2 form a convex set H+

2 and 
 is convex.
If we manage to deal with the dif�cult positivity constraint,we can then take as a solution
T = A1=2 for any minimizer A of 
 in H+

2 . By the above proposition this will not lead to
global minimizers with different metric properties as our algorithm.

The regularizer penalizes the dimensionality of the sought transformation. It can therefore
be expected that the optimal transformation is dimensionally sparse, in the sense that only



few of its singular values are signi�cantly different from zero. In practice this was indeed
found to be the case: Typically only 8-36 singular values of T were larger than 2% of the
spectral norm (maximal singular value).

5 Experiments with images

All the experiments reported below were carried out with margin 
 = 1 and the regular-
ization parameter � = 0:005. The gradient descent was carried out for 106 steps with a
constant learning rate � = 0:01.

Pixel vectors were normalized, otherwise there was no preprocessing. The feature map
 was effected by the Gaussian RBF-kernel � (x; y) = (1=2) exp

�
�4 jx� yj2

�
, where

jx� yj is the euclidean metric on pixel vectors.
Each experiment used a set of labeled training data from which homonymous and heterony-
mous pairs were generated at random with equal frequency and fed into the algorithm to
produce the operator T . The sparsity mentioned in Table 2 is the number of singular values
of T larger than 2% of the spectral norm.

The resulting representation T � was then applied to the pixel-vectors in the test set, which
were equidimensional to those in the training set. Test and training set had no overlapping
categories.

On the test set we measured two properties of the representation: The area under the ROC-
curve (ROC area T �  ) for the distance as a detector of class-equality. This can be re-
garded as an estimator for the probability that a homonymous pair is represented at a closer
distance than an independently chosen heteronymous pair. The other quantity is the error
(error T � ) of nearest neighbor classi�ers when each category of the test set is represented
by a single example, averaged over 10 runs with randomly chosen examples. Both quan-
tities were also measured for the unrepresented but normalized input pixel vectors (ROC
area input, error input).

Three experiments were made with planar geometrically invariant character recognition:
Rotation invariance, scale invariance and combined rotation and scale invariance. For each
invariance randomly transformed images of printed alpha characters were used for the train-
ing set and randomly transformed images of printed digits were used for the test set, the
digit 9 being eliminated whenever rotation invariance was involved. Scaling ranged over a
linear factor of two. All images hat 28x28 pixels.

The COIL-100 dataset (converted to grayscale) was used to test object recognition with
invariance under certain spatial rotations. Every other image of Objects 1 to 80 was used
for training, 81 to 100 for testing, as in [7].

The ATT dataset was used for an experiment with face-recognition. As in [5] images of the
subjects numbered from 1 to 35 were used for training, those from 36 to 40 for testing.

The results of these experiments are summarized in table 2. The method signi�cantly
increased the ROC area and reduced the recognition error in all cases by comparison to the
unprocessed input vectors. The greatest improvement was in the case of planar rotation and
scale invariances. The results on the ATT dataset are very good and comparable to those
reported in [5], but the ATT dataset is simply too easy and the more interesting AR-Purdue
dataset was not available. The results with the COIL database are better than those reported
in [7].

It must be emphasized that our method makes no assumption on the speci�c properties of
image data, such as high correlations for neighboring pixels: In contrast to the approaches
described in [5] and [7], our method would yield the same results if the images were sub-



Table 2: Experimental results
type of rotation scale rot.+scale spatial rot. face
experiment invariance invariance invariance invariance recognition
training set alpha alpha alpha COIL �80 ATT 1-35
nr of categories 20 52 20 80 35
nr of examples 2000 1560 4000 2880 350
sparsity of T 9 36 8 46 36
test set digitsn9 digits digitsn9 COIL �81 ATT 36-40
nr of categories 9 10 9 20 5
nr of examples 900 300 1800 720 50
ROC area input 0.597 0.69 0.54 0.845 0.934
ROC area T �  0.9994 0.993 0.982 0.989 0.997
error input 0.716 0.508 0.822 0.375 0.113
error T �  0.008 0.036 0.093 0.093 0

jected to any �xed but unknown permutation of pixel indices. The method can thus be used
in any other domain where kernel techniques apply.
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