Conformal Multi-Instance Kernels

Matthew Blaschko and Thomas Hofmann Max Planck Institute for Biological Cybernetics and Google Switzerland

December 8, 2006

- Introduction
- 2 Multi-Instance Kernels
- Conformal Kernels
- Conformal Multi-Instance Kernels
- Generalization Bound Minimization
- 6 Diagonalization Approximation of the Trace-Margin Bound
- Results

Multiple Instance Learning

- We wish to learn a mapping from bags of patterns to output labels
- two kinds of ambiguity
 - intrinsic variability of feature vectors
 - identifying implicitly or explicitly characteristic vectors in a bag
- Witness assumption: if any single pattern in a bag is positive, the bag inherits a positive label
- ullet notation: $p=\{x_1,\ldots,x_N\}$ and $p'=\{x_1',\ldots,x_{N'}'\}$

Related Work

Multi-instance kernels (Gärtner, et al., 2002)

$$k(p, p') = \frac{1}{N \cdot N'} \sum_{i=1}^{N} \sum_{j=1}^{N'} \kappa(x_i, x_j')^{\rho}$$
 (1)

Bhattacharyya Kernel (Kondor and Jebara, 2003)

$$k(p,p') = \int \sqrt{p(x)} \sqrt{p'(x)} dx$$
 (2)

p(x) in this case is a Gaussian distribution computed from kernel-PCA.

Related Work (continued)

Matching Kernel (Wallraven, Caputo, and Graf, 2003)

$$k(\rho, \rho') = \frac{1}{2} \left(\hat{k}(\rho, \rho') + \hat{k}(\rho', \rho) \right) \tag{3}$$

$$\hat{k}(p, p') = \frac{1}{N} \sum_{i=1}^{N} \max_{j \in 1, ..., N'} \kappa(x_i, x'_j)$$
 (4)

• Pyramid Match Kernel (Grauman and Darrell, 2005)

$$k(p,p') = \frac{\hat{k}(p,p')}{\sqrt{\hat{k}(p,p) \cdot \hat{k}(p',p')}}$$
(5)

$$\hat{k}(p,p') = \sum_{i=0}^{\lceil \log 2r \rceil} \alpha_i \left(|H_{p,i} \cap H_{p,i}| - |H_{p,i-1} \cap H_{p',i-1}| \right)$$
 (6)

- 4 ロ b 4 個 b 4 種 b 4 種 b 2 種 り 9 0 0 0 0

Kernels between distributions

A general form

$$k(p,p') = \int p(x)p'(x)dx = E_p[p'(x)] = E_{p'}[p(x)]$$
 (7)

Gaussian distribution (spherical)

$$\int_{\mathbb{R}^D} \rho(x) \rho'(x) dx = \frac{1}{(4\pi\sigma^2)^{D/2}} e^{-\|\mu' - \mu\|^2/(4\sigma^2)}$$
 (8)

This is a Gaussian kernel to a constant factor.

• Gaussian distribution in general case ($ho \neq 1$, arbitrary covariance matrix) is also known in closed form

Kernel Density Estimation Over Bags

$$k(\rho, \rho') = \int \left(\frac{1}{N} \sum_{i=1}^{N} \kappa(x_i, x)\right) \cdot \left(\frac{1}{N'} \sum_{j=1}^{N'} \kappa(x'_j, x)\right) dx \qquad (9)$$

$$= \frac{1}{N \cdot N'} \frac{1}{(4\pi\sigma^2)^{D/2}} \sum_{i=1}^{N} \sum_{j=1}^{N'} e^{-||x_j' - x_i||^2/(4\sigma^2)}$$
 (10)

$$\propto \frac{1}{N \cdot N'} \sum_{i=1}^{N} \sum_{j=1}^{N'} \kappa(x_i, x_j')$$
 (11)

Conformal Kernels (Amari and Wu, 1999)

Metric tensor induced by mapping, φ

$$g_{ij}(x) = \left(\frac{\partial}{\partial x_i}\varphi(x)\right) \cdot \left(\frac{\partial}{\partial x_j}\varphi(x)\right) \tag{12}$$

The volume for in a Riemannian space is defined as

$$dV = \sqrt{g(x)} dx_1 \dots dx_n \tag{13}$$

where $g(x) = \det |g_{ij}(x)|$.

$$\tilde{k}(x,x') = c(x)c(x')k(x,x') \tag{14}$$

$$\tilde{g}_{ij}(x) = c_i(x)c_j(x) + c(x)^2g_{ij}(x)$$
 (15)

where $c_i(x) = \partial c(x)/\partial x_i$.

- 4 ロ > 4 個 > 4 差 > 4 差 > 差 釣 Q (C)

Conformal Multi-Instance Kernels

$$\tilde{\kappa}(x_i, x_j') = c_{\theta}(x_i) c_{\theta}(x_j') \kappa(x_i, x_j')$$
(16)

General form:

$$\tilde{k}(\rho, \rho') = \frac{1}{N \cdot N'} \sum_{i=1}^{N} \sum_{j=1}^{N'} c_{\theta}(x_i) c_{\theta}(x'_j) \kappa(x_i, x'_j)$$
 (17)

where θ are parameters of the function f that can be optimized to maximize discriminability.

Implementation details

$$c_{\theta}(x) = \sum_{i=1}^{|\theta|} \theta_i e^{\|x - \mu_i\|^2 / 2\sigma^2}$$
 (18)

$$\tilde{k}(\rho, \rho') = \frac{1}{N \cdot N'} \sum_{i=1}^{N} \sum_{j=1}^{N'} \left(\sum_{k=1}^{|\theta|} \theta_k \tilde{\kappa}(x_i, \mu_k) \right) \left(\sum_{l=1}^{|\theta|} \theta_l \tilde{\kappa}(x_j', \mu_l) \right) \kappa(x_i, x_j')$$
(19)

 μ_i are chosen using k-means with the buckshot heuristic. $|\theta|$ is chosen according to how much computation is available. σ is currently optimized using cross-validation.

Gradient Descent on the Radius-Margin Bound

Algorithm:

- 1. Initialize θ to some value
- 2. Solve for $\alpha^*(\theta)$ using standard SVM algorithm
- 3. Update the parameters θ using a gradient step $(\partial R^2 ||w||^2/\partial \theta)$
- 4. Go to step 2 or stop when minimum is reached

Advantage: only requirement is that the kernel be differentiable Problem: slow as molasses

Optimizing the Trace-Margin Bound

$$w_{C,\tau}(\alpha,\theta) = \max_{\alpha,\theta} 2\alpha^T e - \alpha^T (G(K_{\theta}) + \tau I) \alpha$$
 (20)

$$C \ge \alpha \ge 0, \ \alpha^T y = 0 \tag{21}$$

When $K_{\theta} = \sum_{l=1}^{q} \theta_{l} K_{l}$, $\theta > 0$, we can solve for θ using a QCQP or SILP

Diagonalization of conformal transformation

When $l \neq m$

$$\tilde{\kappa}(x_i, \mu_l)\tilde{\kappa}(x'_j, \mu_m)\kappa(x_i, x'_j) \approx 0$$
 (22)

$$k(p, p') \approx \frac{1}{NN'} \sum_{i=1}^{N} \sum_{j=1}^{N'} \left(\sum_{l=1}^{q} \theta_{l}^{2} \tilde{\kappa}(x_{i}, \mu_{l}) \tilde{\kappa}(x_{j}', \mu_{l}) \right) \kappa(x_{i}, x_{j}') \quad (23)$$

$$= \sum_{l=1}^{q} \theta_{l}^{2} \left(\frac{1}{N \cdot N'} \sum_{i=1}^{N} \sum_{j=1}^{N'} \tilde{\kappa}(x_{i}, \mu_{l}) \tilde{\kappa}(x_{j}', \mu_{l}) \kappa(x_{i}, x_{j}') \right) \quad (24)$$

A toy example

Experimental Results

Aperiniental Nesults			
	MUSK 1	MUSK 2	
6 6 116 1	00.00	06.06	
Conformal Kernels	90.22	86 96	
Multi-instance SVM	92.4 (IAPR)	89.2 (IAPR)	
EM Discriminative Density	84.8	84.9	
	Elephant	Fox	Tiger
Conformal Kernels	83.5	61.5	84.5
Multi-instance SVM	82.2	59.4	84
			• •
EM Discriminative Density	78.3	56.1	72.1
	TREC 1	TREC 2	TREC 3
Canfannal Kannala	0.4	76.05	06
Conformal Kernels	94	76.25	86
Multi-instance SVM	93.9	84.5	87
EM Discriminative Density	85.8	84.0	69

Future Work

- Better selection of RBF centers
- Alternate basis for conformal function e.g. spectral decompositions
- Scaling up to thousands of bags with hundreds of patterns per bag
- Application to Computer Vision applications
- More public datasets

Thank you

- I'll be glad to answer any questions.
- This work is funded in part by the EC projects CLASS and PerAct.